从头设计含色氨酸的广谱阳离子抗菌八肽。

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL
ChemMedChem Pub Date : 2024-10-14 DOI:10.1002/cmdc.202400566
Tanumoy Sarkar, S R Vignesh, Pradeep Kumar Sundaravadivelu, Rajkumar P Thummer, Priyadarshi Satpati, Sunanda Chatterjee
{"title":"从头设计含色氨酸的广谱阳离子抗菌八肽。","authors":"Tanumoy Sarkar, S R Vignesh, Pradeep Kumar Sundaravadivelu, Rajkumar P Thummer, Priyadarshi Satpati, Sunanda Chatterjee","doi":"10.1002/cmdc.202400566","DOIUrl":null,"url":null,"abstract":"<p><p>With the advent of antibiotic resistant organisms, development of alternate classes of molecules other than antibiotics to combat microbial infections, have become extremely important. In this context, antimicrobial peptides have taken center stage of antimicrobial therapeutic research. In this work, we have reported two cationic antimicrobial octapeptides WRL and LWRF, with broad spectrum antimicrobial activities against several strains of ESKAPE pathogens. Both the peptides were membrane associative and induced microbial cell death through membranolysis, being selective towards microbial membranes over mammalian membranes. The AMPs were unstructured in water, adopting partial helical conformation in the presence of microbial membrane mimics. Electrostatic interaction formed the primary basis of peptide-membrane interactions. WRL was more potent, salt tolerant and faster acting of the two AMPs, owing to the presence of two tryptophan residues against that of one in LWRF. Increased tryptophan number in WRL enhanced its membrane association ability, resulting in higher antimicrobial potency but lower selectivity. This experimental and computational work, established that an optimum number of tryptophan residues and their position was critical for obtaining high antimicrobial potency and selectivity simultaneously in the designed cationic AMPs. Understanding the peptide membrane interactions in atomistic details can lead to development of better antimicrobial therapeutics in future.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400566"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De Novo Design of Tryptophan Containing Broad-Spectrum Cationic Antimicrobial Octapeptides.\",\"authors\":\"Tanumoy Sarkar, S R Vignesh, Pradeep Kumar Sundaravadivelu, Rajkumar P Thummer, Priyadarshi Satpati, Sunanda Chatterjee\",\"doi\":\"10.1002/cmdc.202400566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the advent of antibiotic resistant organisms, development of alternate classes of molecules other than antibiotics to combat microbial infections, have become extremely important. In this context, antimicrobial peptides have taken center stage of antimicrobial therapeutic research. In this work, we have reported two cationic antimicrobial octapeptides WRL and LWRF, with broad spectrum antimicrobial activities against several strains of ESKAPE pathogens. Both the peptides were membrane associative and induced microbial cell death through membranolysis, being selective towards microbial membranes over mammalian membranes. The AMPs were unstructured in water, adopting partial helical conformation in the presence of microbial membrane mimics. Electrostatic interaction formed the primary basis of peptide-membrane interactions. WRL was more potent, salt tolerant and faster acting of the two AMPs, owing to the presence of two tryptophan residues against that of one in LWRF. Increased tryptophan number in WRL enhanced its membrane association ability, resulting in higher antimicrobial potency but lower selectivity. This experimental and computational work, established that an optimum number of tryptophan residues and their position was critical for obtaining high antimicrobial potency and selectivity simultaneously in the designed cationic AMPs. Understanding the peptide membrane interactions in atomistic details can lead to development of better antimicrobial therapeutics in future.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400566\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400566\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400566","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

随着抗生素耐药性生物的出现,开发抗生素以外的其他分子来对抗微生物感染变得极为重要。在这种情况下,抗菌肽已成为抗菌治疗研究的中心。在这项工作中,我们报告了两种阳离子抗菌八肽 WRL 和 LWRF,它们对几种 ESKAPE 病原菌具有广谱抗菌活性。这两种肽都具有膜关联性,可通过膜分解诱导微生物细胞死亡,对微生物膜的选择性高于哺乳动物膜。AMPs 在水中是非结构化的,在微生物膜模拟物存在的情况下采用部分螺旋构象。静电作用是肽与膜相互作用的主要基础。由于 WRL 含有两个色氨酸残基,而 LWRF 含有一个,因此这两种 AMP 的药效更强,耐盐性更好,起效更快。WRL 中色氨酸数量的增加增强了其膜结合能力,从而提高了抗菌效力,但选择性较低。这项实验和计算工作证明,色氨酸残基的最佳数量及其位置是阳离子 AMP 同时获得高抗菌效力和选择性的关键。了解肽膜相互作用的原子细节,有助于将来开发出更好的抗菌疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De Novo Design of Tryptophan Containing Broad-Spectrum Cationic Antimicrobial Octapeptides.

With the advent of antibiotic resistant organisms, development of alternate classes of molecules other than antibiotics to combat microbial infections, have become extremely important. In this context, antimicrobial peptides have taken center stage of antimicrobial therapeutic research. In this work, we have reported two cationic antimicrobial octapeptides WRL and LWRF, with broad spectrum antimicrobial activities against several strains of ESKAPE pathogens. Both the peptides were membrane associative and induced microbial cell death through membranolysis, being selective towards microbial membranes over mammalian membranes. The AMPs were unstructured in water, adopting partial helical conformation in the presence of microbial membrane mimics. Electrostatic interaction formed the primary basis of peptide-membrane interactions. WRL was more potent, salt tolerant and faster acting of the two AMPs, owing to the presence of two tryptophan residues against that of one in LWRF. Increased tryptophan number in WRL enhanced its membrane association ability, resulting in higher antimicrobial potency but lower selectivity. This experimental and computational work, established that an optimum number of tryptophan residues and their position was critical for obtaining high antimicrobial potency and selectivity simultaneously in the designed cationic AMPs. Understanding the peptide membrane interactions in atomistic details can lead to development of better antimicrobial therapeutics in future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信