通过引导提高医学教育中的试题质量。

IF 5.2 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Changiz Mohiyeddini
{"title":"通过引导提高医学教育中的试题质量。","authors":"Changiz Mohiyeddini","doi":"10.1002/ase.2522","DOIUrl":null,"url":null,"abstract":"<p><p>Medical schools are required to assess and evaluate their curricula and to develop exam questions with strong reliability and validity evidence, often based on data derived from statistically small samples of medical students. Achieving a large enough sample to reliably and validly evaluate courses, assessments, and exam questions would require extensive data collection over many years, which is inefficient, especially in the fast-changing educational environment of medical schools. This article demonstrates how advanced quantitative methods, such as bootstrapping, can provide reliable data by resampling a single dataset to create many simulated samples. This economic approach, among others, allows for the creation of confidence intervals and, consequently, the accurate evaluation of exam questions as well as broader course and curriculum assessments. Bootstrapping offers a robust alternative to traditional methods, improving the psychometric quality of exam questions, and contributing to fair and valid assessments in medical education.</p>","PeriodicalId":124,"journal":{"name":"Anatomical Sciences Education","volume":" ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing exam question quality in medical education through bootstrapping.\",\"authors\":\"Changiz Mohiyeddini\",\"doi\":\"10.1002/ase.2522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical schools are required to assess and evaluate their curricula and to develop exam questions with strong reliability and validity evidence, often based on data derived from statistically small samples of medical students. Achieving a large enough sample to reliably and validly evaluate courses, assessments, and exam questions would require extensive data collection over many years, which is inefficient, especially in the fast-changing educational environment of medical schools. This article demonstrates how advanced quantitative methods, such as bootstrapping, can provide reliable data by resampling a single dataset to create many simulated samples. This economic approach, among others, allows for the creation of confidence intervals and, consequently, the accurate evaluation of exam questions as well as broader course and curriculum assessments. Bootstrapping offers a robust alternative to traditional methods, improving the psychometric quality of exam questions, and contributing to fair and valid assessments in medical education.</p>\",\"PeriodicalId\":124,\"journal\":{\"name\":\"Anatomical Sciences Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Sciences Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/ase.2522\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/ase.2522","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

医学院校需要对其课程进行评估和评价,并编制具有较强可靠性和有效性证据的考试试题,而这通常是基于从统计上较小的医学生样本中获得的数据。要获得足够大的样本来可靠、有效地评估课程、评估和试题,就需要在多年时间内收集大量数据,而这是效率低下的做法,尤其是在医学院瞬息万变的教育环境中。本文展示了先进的定量方法,如引导法(bootstrapping),如何通过对单个数据集进行重采样来创建许多模拟样本,从而提供可靠的数据。除其他方法外,这种经济方法还可以建立置信区间,从而准确评估考试问题以及更广泛的课程和课程评估。引导法为传统方法提供了一种强有力的替代方法,提高了试题的心理测量质量,有助于医学教育中公平有效的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing exam question quality in medical education through bootstrapping.

Medical schools are required to assess and evaluate their curricula and to develop exam questions with strong reliability and validity evidence, often based on data derived from statistically small samples of medical students. Achieving a large enough sample to reliably and validly evaluate courses, assessments, and exam questions would require extensive data collection over many years, which is inefficient, especially in the fast-changing educational environment of medical schools. This article demonstrates how advanced quantitative methods, such as bootstrapping, can provide reliable data by resampling a single dataset to create many simulated samples. This economic approach, among others, allows for the creation of confidence intervals and, consequently, the accurate evaluation of exam questions as well as broader course and curriculum assessments. Bootstrapping offers a robust alternative to traditional methods, improving the psychometric quality of exam questions, and contributing to fair and valid assessments in medical education.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anatomical Sciences Education
Anatomical Sciences Education Anatomy/education-
CiteScore
10.30
自引率
39.70%
发文量
91
期刊介绍: Anatomical Sciences Education, affiliated with the American Association for Anatomy, serves as an international platform for sharing ideas, innovations, and research related to education in anatomical sciences. Covering gross anatomy, embryology, histology, and neurosciences, the journal addresses education at various levels, including undergraduate, graduate, post-graduate, allied health, medical (both allopathic and osteopathic), and dental. It fosters collaboration and discussion in the field of anatomical sciences education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信