Svenja Maurer, Valeria Kirsch, Leonie Ruths, Rolf E. Brenner, Jana Riegger
{"title":"结合达沙替尼和槲皮素的衰老疗法通过释放促合成代谢介质恢复了人类骨关节炎软骨细胞的软骨表型。","authors":"Svenja Maurer, Valeria Kirsch, Leonie Ruths, Rolf E. Brenner, Jana Riegger","doi":"10.1111/acel.14361","DOIUrl":null,"url":null,"abstract":"<p>Cellular senescence is associated with various age-related disorders and is assumed to play a major role in the pathogenesis of osteoarthritis (OA). Based on this, we tested a senolytic combination therapy using Dasatinib (D) and Quercetin (Q) on aged isolated human articular chondrocytes (hACs), as well as in OA-affected cartilage tissue (OARSI grade 1–2). Stimulation with D + Q selectively eliminated senescent cells in both, cartilage explants and isolated hAC. Furthermore, the therapy significantly promoted chondroanabolism, as demonstrated by increased gene expression levels of COL2A1, ACAN, and SOX9, as well as elevated collagen type II and glycosaminoglycan biosynthesis. Additionally, D + Q treatment significantly reduced the release of SASP factors (IL6, CXCL1). RNA sequencing analysis revealed an upregulation of the anabolic factors, inter alia, FGF18, IGF1, and TGFB2, as well as inhibitory effects on cytokines and the YAP-1 signaling pathway, explaining the underlying mechanism of the chondroanabolic promotion upon senolytic treatment. Accordingly, stimulation of untreated hAC with conditioned medium of D + Q-treated cells similarly induced the expression of chondrogenic markers. Detailed analyses demonstrated that chondroanabolic effects could be mainly attributed to Dasatinib, while monotherapeutical application of Quercetin or Navitoclax did not promote the chondroanabolism. Overall, D + Q therapy restored the chondrogenic phenotype in OA hAC most likely by creating a pro-chondroanabolic environment through the reduction of SASP factors and upregulation of growth factors. This senolytic approach could therefore be a promising candidate for further testing as a disease-modifying osteoarthritis drug.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14361","citationCount":"0","resultStr":"{\"title\":\"Senolytic therapy combining Dasatinib and Quercetin restores the chondrogenic phenotype of human osteoarthritic chondrocytes by the release of pro-anabolic mediators\",\"authors\":\"Svenja Maurer, Valeria Kirsch, Leonie Ruths, Rolf E. Brenner, Jana Riegger\",\"doi\":\"10.1111/acel.14361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellular senescence is associated with various age-related disorders and is assumed to play a major role in the pathogenesis of osteoarthritis (OA). Based on this, we tested a senolytic combination therapy using Dasatinib (D) and Quercetin (Q) on aged isolated human articular chondrocytes (hACs), as well as in OA-affected cartilage tissue (OARSI grade 1–2). Stimulation with D + Q selectively eliminated senescent cells in both, cartilage explants and isolated hAC. Furthermore, the therapy significantly promoted chondroanabolism, as demonstrated by increased gene expression levels of COL2A1, ACAN, and SOX9, as well as elevated collagen type II and glycosaminoglycan biosynthesis. Additionally, D + Q treatment significantly reduced the release of SASP factors (IL6, CXCL1). RNA sequencing analysis revealed an upregulation of the anabolic factors, inter alia, FGF18, IGF1, and TGFB2, as well as inhibitory effects on cytokines and the YAP-1 signaling pathway, explaining the underlying mechanism of the chondroanabolic promotion upon senolytic treatment. Accordingly, stimulation of untreated hAC with conditioned medium of D + Q-treated cells similarly induced the expression of chondrogenic markers. Detailed analyses demonstrated that chondroanabolic effects could be mainly attributed to Dasatinib, while monotherapeutical application of Quercetin or Navitoclax did not promote the chondroanabolism. Overall, D + Q therapy restored the chondrogenic phenotype in OA hAC most likely by creating a pro-chondroanabolic environment through the reduction of SASP factors and upregulation of growth factors. This senolytic approach could therefore be a promising candidate for further testing as a disease-modifying osteoarthritis drug.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14361\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14361\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14361","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
细胞衰老与各种年龄相关疾病有关,并被认为在骨关节炎(OA)的发病机制中起着重要作用。基于这一点,我们使用达沙替尼(D)和槲皮素(Q)对老化的分离人关节软骨细胞(hACs)以及受 OA 影响的软骨组织(OARSI 1-2 级)进行了溶解性联合疗法测试。在软骨外植体和分离的人关节软骨细胞中,D + Q 的刺激都能选择性地消除衰老细胞。此外,该疗法还能明显促进软骨新陈代谢,表现为 COL2A1、ACAN 和 SOX9 的基因表达水平提高,以及 II 型胶原和糖胺聚糖的生物合成增加。此外,D + Q 处理还能显著减少 SASP 因子(IL6、CXCL1)的释放。RNA 测序分析表明,合成代谢因子,特别是 FGF18、IGF1 和 TGFB2 的上调,以及对细胞因子和 YAP-1 信号通路的抑制作用,解释了衰老素处理后促进软骨合成代谢的潜在机制。相应地,用 D + Q 处理过的细胞的条件培养基刺激未处理过的 hAC 也能诱导软骨标志物的表达。详细的分析表明,软骨代谢作用主要归因于达沙替尼,而单一疗法应用槲皮素或纳维考克并不能促进软骨代谢。总之,D+Q疗法能恢复OA hAC的软骨表型,很可能是通过减少SASP因子和上调生长因子创造了一个有利于软骨代谢的环境。因此,这种溶解衰老的方法很有希望作为一种改变骨关节炎疾病的药物接受进一步测试。
Senolytic therapy combining Dasatinib and Quercetin restores the chondrogenic phenotype of human osteoarthritic chondrocytes by the release of pro-anabolic mediators
Cellular senescence is associated with various age-related disorders and is assumed to play a major role in the pathogenesis of osteoarthritis (OA). Based on this, we tested a senolytic combination therapy using Dasatinib (D) and Quercetin (Q) on aged isolated human articular chondrocytes (hACs), as well as in OA-affected cartilage tissue (OARSI grade 1–2). Stimulation with D + Q selectively eliminated senescent cells in both, cartilage explants and isolated hAC. Furthermore, the therapy significantly promoted chondroanabolism, as demonstrated by increased gene expression levels of COL2A1, ACAN, and SOX9, as well as elevated collagen type II and glycosaminoglycan biosynthesis. Additionally, D + Q treatment significantly reduced the release of SASP factors (IL6, CXCL1). RNA sequencing analysis revealed an upregulation of the anabolic factors, inter alia, FGF18, IGF1, and TGFB2, as well as inhibitory effects on cytokines and the YAP-1 signaling pathway, explaining the underlying mechanism of the chondroanabolic promotion upon senolytic treatment. Accordingly, stimulation of untreated hAC with conditioned medium of D + Q-treated cells similarly induced the expression of chondrogenic markers. Detailed analyses demonstrated that chondroanabolic effects could be mainly attributed to Dasatinib, while monotherapeutical application of Quercetin or Navitoclax did not promote the chondroanabolism. Overall, D + Q therapy restored the chondrogenic phenotype in OA hAC most likely by creating a pro-chondroanabolic environment through the reduction of SASP factors and upregulation of growth factors. This senolytic approach could therefore be a promising candidate for further testing as a disease-modifying osteoarthritis drug.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.