生酮β-羟丁酸调节TCA循环相关酶的β-羟丁酸化,减轻阿尔茨海默氏症小鼠与疾病相关的病理变化。

IF 8 1区 医学 Q1 CELL BIOLOGY
Aging Cell Pub Date : 2024-10-16 DOI:10.1111/acel.14368
Wanhong Han, Bingchang Zhang, Wenpeng Zhao, Wentao Zhao, Jiawei He, Xiansheng Qiu, Liang Zhang, Xiuyan Wang, Yong Wang, Hanwen Lu, Yaya Zhang, Yuanyuan Xie, Yanyan Geng, Wujie Zhao, Qionghui Huang, Yun-Wu Zhang, Zhanxiang Wang
{"title":"生酮β-羟丁酸调节TCA循环相关酶的β-羟丁酸化,减轻阿尔茨海默氏症小鼠与疾病相关的病理变化。","authors":"Wanhong Han, Bingchang Zhang, Wenpeng Zhao, Wentao Zhao, Jiawei He, Xiansheng Qiu, Liang Zhang, Xiuyan Wang, Yong Wang, Hanwen Lu, Yaya Zhang, Yuanyuan Xie, Yanyan Geng, Wujie Zhao, Qionghui Huang, Yun-Wu Zhang, Zhanxiang Wang","doi":"10.1111/acel.14368","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification that has recently been found to regulate protein functions. However, whether and how protein Kbhb modification participates in Alzheimer's disease (AD) remains unknown. Herein, we carried out 4D label-free β-hydroxybutylation quantitative proteomics using brain samples of 8-month-old and 2-month-old APP/PS1 AD model mice and wild-type (WT) controls. We identified a series of tricarboxylic acid (TCA) cycle-associated enzymes including citrate synthase (CS) and succinate-CoA ligase subunit alpha (SUCLG1), whose Kbhb modifications were decreased in APP/PS1 mice at pathological stages. Sodium β-hydroxybutyrate (Na-β-OHB) treatment markedly increased Kbhb modifications of CS and SUCLG1 and their enzymatic activities, leading to elevated ATP production. We further found that Kbhb modifications at lysine 393 site in CS and at lysine 81 site in SUCLG1 were crucial for their enzymatic activities. Finally, we found that β-OHB levels were decreased in the brain of APP/PS1 mice at pathological stages. While ketogenic diet not only significantly increased β-OHB levels, Kbhb modifications and enzymatic activities of CS and SUCLG1, and ATP production, but also dramatically attenuated β-amyloid plaque pathologies and microgliosis in APP/PS1 mice. Together, our findings indicate the importance of protein Kbhb modification for maintaining normal TCA cycle and ATP production and provide a novel molecular mechanism underlying the beneficial effects of ketogenic diet on energy metabolism and AD intervention.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14368"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ketogenic β-hydroxybutyrate regulates β-hydroxybutyrylation of TCA cycle-associated enzymes and attenuates disease-associated pathologies in Alzheimer's mice.\",\"authors\":\"Wanhong Han, Bingchang Zhang, Wenpeng Zhao, Wentao Zhao, Jiawei He, Xiansheng Qiu, Liang Zhang, Xiuyan Wang, Yong Wang, Hanwen Lu, Yaya Zhang, Yuanyuan Xie, Yanyan Geng, Wujie Zhao, Qionghui Huang, Yun-Wu Zhang, Zhanxiang Wang\",\"doi\":\"10.1111/acel.14368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification that has recently been found to regulate protein functions. However, whether and how protein Kbhb modification participates in Alzheimer's disease (AD) remains unknown. Herein, we carried out 4D label-free β-hydroxybutylation quantitative proteomics using brain samples of 8-month-old and 2-month-old APP/PS1 AD model mice and wild-type (WT) controls. We identified a series of tricarboxylic acid (TCA) cycle-associated enzymes including citrate synthase (CS) and succinate-CoA ligase subunit alpha (SUCLG1), whose Kbhb modifications were decreased in APP/PS1 mice at pathological stages. Sodium β-hydroxybutyrate (Na-β-OHB) treatment markedly increased Kbhb modifications of CS and SUCLG1 and their enzymatic activities, leading to elevated ATP production. We further found that Kbhb modifications at lysine 393 site in CS and at lysine 81 site in SUCLG1 were crucial for their enzymatic activities. Finally, we found that β-OHB levels were decreased in the brain of APP/PS1 mice at pathological stages. While ketogenic diet not only significantly increased β-OHB levels, Kbhb modifications and enzymatic activities of CS and SUCLG1, and ATP production, but also dramatically attenuated β-amyloid plaque pathologies and microgliosis in APP/PS1 mice. Together, our findings indicate the importance of protein Kbhb modification for maintaining normal TCA cycle and ATP production and provide a novel molecular mechanism underlying the beneficial effects of ketogenic diet on energy metabolism and AD intervention.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14368\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14368\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14368","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

赖氨酸β-羟基丁酰化(Kbhb)是一种翻译后修饰,最近发现它能调节蛋白质的功能。然而,蛋白质 Kbhb 修饰是否以及如何参与阿尔茨海默病(AD)的发生仍是未知数。在此,我们利用8个月大和2个月大的APP/PS1 AD模型小鼠以及野生型(WT)对照组的脑样本,开展了4D无标记β-羟丁基化定量蛋白质组学研究。我们发现了一系列与三羧酸(TCA)循环相关的酶,包括柠檬酸合成酶(CS)和琥珀酸-CoA连接酶亚基α(SUCLG1),这些酶的Kbhb修饰在APP/PS1小鼠的病理阶段有所减少。β-羟基丁酸钠(Na-β-OHB)处理显著增加了CS和SUCLG1的Kbhb修饰及其酶活性,从而导致ATP生成增加。我们进一步发现,CS 的赖氨酸 393 位点和 SUCLG1 的赖氨酸 81 位点的 Kbhb 修饰对它们的酶活性至关重要。最后,我们发现在病理阶段,APP/PS1 小鼠脑中的β-OHB 水平下降。而生酮饮食不仅能显著提高β-OHB水平、Kbhb修饰、CS和SUCLG1的酶活性以及ATP的产生,还能显著减轻APP/PS1小鼠β-淀粉样斑块的病理变化和小胶质细胞病变。总之,我们的研究结果表明了蛋白质 Kbhb 修饰对维持正常 TCA 循环和 ATP 生成的重要性,并为生酮饮食对能量代谢和 AD 干预的有益影响提供了一种新的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ketogenic β-hydroxybutyrate regulates β-hydroxybutyrylation of TCA cycle-associated enzymes and attenuates disease-associated pathologies in Alzheimer's mice.

Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification that has recently been found to regulate protein functions. However, whether and how protein Kbhb modification participates in Alzheimer's disease (AD) remains unknown. Herein, we carried out 4D label-free β-hydroxybutylation quantitative proteomics using brain samples of 8-month-old and 2-month-old APP/PS1 AD model mice and wild-type (WT) controls. We identified a series of tricarboxylic acid (TCA) cycle-associated enzymes including citrate synthase (CS) and succinate-CoA ligase subunit alpha (SUCLG1), whose Kbhb modifications were decreased in APP/PS1 mice at pathological stages. Sodium β-hydroxybutyrate (Na-β-OHB) treatment markedly increased Kbhb modifications of CS and SUCLG1 and their enzymatic activities, leading to elevated ATP production. We further found that Kbhb modifications at lysine 393 site in CS and at lysine 81 site in SUCLG1 were crucial for their enzymatic activities. Finally, we found that β-OHB levels were decreased in the brain of APP/PS1 mice at pathological stages. While ketogenic diet not only significantly increased β-OHB levels, Kbhb modifications and enzymatic activities of CS and SUCLG1, and ATP production, but also dramatically attenuated β-amyloid plaque pathologies and microgliosis in APP/PS1 mice. Together, our findings indicate the importance of protein Kbhb modification for maintaining normal TCA cycle and ATP production and provide a novel molecular mechanism underlying the beneficial effects of ketogenic diet on energy metabolism and AD intervention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信