二维金属有机框架自发分辨手性诱导自旋选择性的双重特征。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rabia Garg, Pravesh Singh Bisht, Subash Chandra Sahoo, Amit Kumar Mondal
{"title":"二维金属有机框架自发分辨手性诱导自旋选择性的双重特征。","authors":"Rabia Garg,&nbsp;Pravesh Singh Bisht,&nbsp;Subash Chandra Sahoo,&nbsp;Amit Kumar Mondal","doi":"10.1002/anie.202418222","DOIUrl":null,"url":null,"abstract":"<p>The Chiral-Induced Spin Selectivity (CISS) effect has emerged as a fascinating phenomenon within the realm of electron's spin manipulation, showcasing a unique interplay between electron's spin and molecular chirality. Subsequent to its discovery, researchers have been actively involved in exploring the new chiral molecules as effective spin filters. In the realm of observing the CISS effect, the conventional approach has mandated the utilization of two distinct enantiomers of chiral molecules. However, this present study represents a significant advancement by demonstrating the ability to control both spin states of electrons in a single system. In this work, we have demonstrated the preparation of chiral metal–organic frameworks (MOFs) via a “spontaneous resolution” process, obviating the requirement for chiral sources. This resulted in the production of chiral crystals exhibiting opposite handedness (<b>1P</b> and <b>1M)</b> and these crystals were subsequently employed as a new class of spin filters based on CISS effect. Remarkably, this work signifies the first instance of achieving dual signature of spin selectivity from a single and exclusively achiral system through a spontaneous resolution process. This holds immense potential as it facilitates the production of two distinct spin-filtering materials from a unified system. Furthermore, we investigated the contact potential differences (CPD) of these chiral crystals and, for the first time, associated it with the preferential spin transport properties. Our findings revealed a correlation between the CPD and the chirality of the crystals, as well as the magnetization orientations of the ferromagnetic substrate, which can be elucidated by the CISS effect. In overall, the significant findings achieved using these robust and easily synthesized MOF crystals without the requirement for chiral medium represent a crucial advancement in enhancing the effectiveness of spin filtering materials to produce spintronic devices.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 6","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Signature of Chirality Induced Spin Selectivity through Spontaneous Resolution of 2D Metal–Organic Frameworks\",\"authors\":\"Rabia Garg,&nbsp;Pravesh Singh Bisht,&nbsp;Subash Chandra Sahoo,&nbsp;Amit Kumar Mondal\",\"doi\":\"10.1002/anie.202418222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Chiral-Induced Spin Selectivity (CISS) effect has emerged as a fascinating phenomenon within the realm of electron's spin manipulation, showcasing a unique interplay between electron's spin and molecular chirality. Subsequent to its discovery, researchers have been actively involved in exploring the new chiral molecules as effective spin filters. In the realm of observing the CISS effect, the conventional approach has mandated the utilization of two distinct enantiomers of chiral molecules. However, this present study represents a significant advancement by demonstrating the ability to control both spin states of electrons in a single system. In this work, we have demonstrated the preparation of chiral metal–organic frameworks (MOFs) via a “spontaneous resolution” process, obviating the requirement for chiral sources. This resulted in the production of chiral crystals exhibiting opposite handedness (<b>1P</b> and <b>1M)</b> and these crystals were subsequently employed as a new class of spin filters based on CISS effect. Remarkably, this work signifies the first instance of achieving dual signature of spin selectivity from a single and exclusively achiral system through a spontaneous resolution process. This holds immense potential as it facilitates the production of two distinct spin-filtering materials from a unified system. Furthermore, we investigated the contact potential differences (CPD) of these chiral crystals and, for the first time, associated it with the preferential spin transport properties. Our findings revealed a correlation between the CPD and the chirality of the crystals, as well as the magnetization orientations of the ferromagnetic substrate, which can be elucidated by the CISS effect. In overall, the significant findings achieved using these robust and easily synthesized MOF crystals without the requirement for chiral medium represent a crucial advancement in enhancing the effectiveness of spin filtering materials to produce spintronic devices.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 6\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202418222\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202418222","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

手性诱导自旋选择性(CISS)效应是电子自旋操纵领域中出现的一种迷人现象,它展示了电子自旋与分子手性之间独特的相互作用。发现这一现象后,研究人员一直在积极探索新的手性分子作为有效的自旋过滤器。在观察 CISS 效应的领域,传统方法必须使用手性分子的两种不同对映体。然而,本研究展示了在单一系统中控制两种电子自旋状态的能力,是一项重大进展。在这项工作中,我们展示了通过 "自发解析 "过程制备手性金属有机框架(MOFs)的方法,从而避免了对手性源的要求。值得注意的是,这项工作标志着首次通过自发解析过程,从一个单一的、完全非手性的体系中实现了自旋选择性的双重特征。这具有巨大的潜力,因为它有助于从一个统一的体系中生产出两种不同的自旋过滤材料。总之,利用这些坚固且易于合成的 MOF 晶体而无需手性介质所取得的重大发现,代表了在提高自旋过滤材料的有效性以生产自旋电子器件方面的重要进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual Signature of Chirality Induced Spin Selectivity through Spontaneous Resolution of 2D Metal–Organic Frameworks

Dual Signature of Chirality Induced Spin Selectivity through Spontaneous Resolution of 2D Metal–Organic Frameworks

The Chiral-Induced Spin Selectivity (CISS) effect has emerged as a fascinating phenomenon within the realm of electron's spin manipulation, showcasing a unique interplay between electron's spin and molecular chirality. Subsequent to its discovery, researchers have been actively involved in exploring the new chiral molecules as effective spin filters. In the realm of observing the CISS effect, the conventional approach has mandated the utilization of two distinct enantiomers of chiral molecules. However, this present study represents a significant advancement by demonstrating the ability to control both spin states of electrons in a single system. In this work, we have demonstrated the preparation of chiral metal–organic frameworks (MOFs) via a “spontaneous resolution” process, obviating the requirement for chiral sources. This resulted in the production of chiral crystals exhibiting opposite handedness (1P and 1M) and these crystals were subsequently employed as a new class of spin filters based on CISS effect. Remarkably, this work signifies the first instance of achieving dual signature of spin selectivity from a single and exclusively achiral system through a spontaneous resolution process. This holds immense potential as it facilitates the production of two distinct spin-filtering materials from a unified system. Furthermore, we investigated the contact potential differences (CPD) of these chiral crystals and, for the first time, associated it with the preferential spin transport properties. Our findings revealed a correlation between the CPD and the chirality of the crystals, as well as the magnetization orientations of the ferromagnetic substrate, which can be elucidated by the CISS effect. In overall, the significant findings achieved using these robust and easily synthesized MOF crystals without the requirement for chiral medium represent a crucial advancement in enhancing the effectiveness of spin filtering materials to produce spintronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信