{"title":"二维金属有机框架自发分辨手性诱导自旋选择性的双重特征。","authors":"Rabia Garg, Pravesh Singh Bisht, Subash Chandra Sahoo, Amit Kumar Mondal","doi":"10.1002/anie.202418222","DOIUrl":null,"url":null,"abstract":"<p>The Chiral-Induced Spin Selectivity (CISS) effect has emerged as a fascinating phenomenon within the realm of electron's spin manipulation, showcasing a unique interplay between electron's spin and molecular chirality. Subsequent to its discovery, researchers have been actively involved in exploring the new chiral molecules as effective spin filters. In the realm of observing the CISS effect, the conventional approach has mandated the utilization of two distinct enantiomers of chiral molecules. However, this present study represents a significant advancement by demonstrating the ability to control both spin states of electrons in a single system. In this work, we have demonstrated the preparation of chiral metal–organic frameworks (MOFs) via a “spontaneous resolution” process, obviating the requirement for chiral sources. This resulted in the production of chiral crystals exhibiting opposite handedness (<b>1P</b> and <b>1M)</b> and these crystals were subsequently employed as a new class of spin filters based on CISS effect. Remarkably, this work signifies the first instance of achieving dual signature of spin selectivity from a single and exclusively achiral system through a spontaneous resolution process. This holds immense potential as it facilitates the production of two distinct spin-filtering materials from a unified system. Furthermore, we investigated the contact potential differences (CPD) of these chiral crystals and, for the first time, associated it with the preferential spin transport properties. Our findings revealed a correlation between the CPD and the chirality of the crystals, as well as the magnetization orientations of the ferromagnetic substrate, which can be elucidated by the CISS effect. In overall, the significant findings achieved using these robust and easily synthesized MOF crystals without the requirement for chiral medium represent a crucial advancement in enhancing the effectiveness of spin filtering materials to produce spintronic devices.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 6","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Signature of Chirality Induced Spin Selectivity through Spontaneous Resolution of 2D Metal–Organic Frameworks\",\"authors\":\"Rabia Garg, Pravesh Singh Bisht, Subash Chandra Sahoo, Amit Kumar Mondal\",\"doi\":\"10.1002/anie.202418222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Chiral-Induced Spin Selectivity (CISS) effect has emerged as a fascinating phenomenon within the realm of electron's spin manipulation, showcasing a unique interplay between electron's spin and molecular chirality. Subsequent to its discovery, researchers have been actively involved in exploring the new chiral molecules as effective spin filters. In the realm of observing the CISS effect, the conventional approach has mandated the utilization of two distinct enantiomers of chiral molecules. However, this present study represents a significant advancement by demonstrating the ability to control both spin states of electrons in a single system. In this work, we have demonstrated the preparation of chiral metal–organic frameworks (MOFs) via a “spontaneous resolution” process, obviating the requirement for chiral sources. This resulted in the production of chiral crystals exhibiting opposite handedness (<b>1P</b> and <b>1M)</b> and these crystals were subsequently employed as a new class of spin filters based on CISS effect. Remarkably, this work signifies the first instance of achieving dual signature of spin selectivity from a single and exclusively achiral system through a spontaneous resolution process. This holds immense potential as it facilitates the production of two distinct spin-filtering materials from a unified system. Furthermore, we investigated the contact potential differences (CPD) of these chiral crystals and, for the first time, associated it with the preferential spin transport properties. Our findings revealed a correlation between the CPD and the chirality of the crystals, as well as the magnetization orientations of the ferromagnetic substrate, which can be elucidated by the CISS effect. In overall, the significant findings achieved using these robust and easily synthesized MOF crystals without the requirement for chiral medium represent a crucial advancement in enhancing the effectiveness of spin filtering materials to produce spintronic devices.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 6\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202418222\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202418222","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual Signature of Chirality Induced Spin Selectivity through Spontaneous Resolution of 2D Metal–Organic Frameworks
The Chiral-Induced Spin Selectivity (CISS) effect has emerged as a fascinating phenomenon within the realm of electron's spin manipulation, showcasing a unique interplay between electron's spin and molecular chirality. Subsequent to its discovery, researchers have been actively involved in exploring the new chiral molecules as effective spin filters. In the realm of observing the CISS effect, the conventional approach has mandated the utilization of two distinct enantiomers of chiral molecules. However, this present study represents a significant advancement by demonstrating the ability to control both spin states of electrons in a single system. In this work, we have demonstrated the preparation of chiral metal–organic frameworks (MOFs) via a “spontaneous resolution” process, obviating the requirement for chiral sources. This resulted in the production of chiral crystals exhibiting opposite handedness (1P and 1M) and these crystals were subsequently employed as a new class of spin filters based on CISS effect. Remarkably, this work signifies the first instance of achieving dual signature of spin selectivity from a single and exclusively achiral system through a spontaneous resolution process. This holds immense potential as it facilitates the production of two distinct spin-filtering materials from a unified system. Furthermore, we investigated the contact potential differences (CPD) of these chiral crystals and, for the first time, associated it with the preferential spin transport properties. Our findings revealed a correlation between the CPD and the chirality of the crystals, as well as the magnetization orientations of the ferromagnetic substrate, which can be elucidated by the CISS effect. In overall, the significant findings achieved using these robust and easily synthesized MOF crystals without the requirement for chiral medium represent a crucial advancement in enhancing the effectiveness of spin filtering materials to produce spintronic devices.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.