华盛顿特区阿片类药物过量后拒绝紧急医疗运送的预测因素。

IF 5.2 1区 医学 Q1 PSYCHIATRY
Addiction Pub Date : 2024-10-12 DOI:10.1111/add.16686
Ben Turley, Kenan Zamore, Robert P Holman
{"title":"华盛顿特区阿片类药物过量后拒绝紧急医疗运送的预测因素。","authors":"Ben Turley, Kenan Zamore, Robert P Holman","doi":"10.1111/add.16686","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Patient initiated transport refusal during Emergency Medical Service (EMS) opioid overdose encounters has become an endemic problem. This study aimed to quantify circumstantial and environmental factors which predict refusal of further care.</p><p><strong>Design: </strong>In this cross-sectional analysis, a case definition for opioid overdose was applied retrospectively to EMS encounters. Selected cases had sociodemographic and situational/incident variables extracted using patient information and free text searches of case narratives. 50 unique binary variables were used to build a logistic model.</p><p><strong>Setting: </strong>Prehospital EMS overdose encounters in Washington, DC, USA, from July 2017 to July 2023.</p><p><strong>Participants: </strong>Of EMS encounters in the study timeframe, 14 587 cases were selected as opioid overdoses.</p><p><strong>Measurements: </strong>Predicted probability for covariates was the outcome variable. Model performance was assessed using Stratified K-Fold Cross-Validation and scored with positive predictive value, sensitivity and F1. Prediction accuracy and McFadden's pseudo-R squared are also determined.</p><p><strong>Findings: </strong>The model achieved a predictive accuracy of 78% with a high positive predictive value (0.83) and moderate sensitivity (0.68). Bystander type influenced the refusal outcome, with decreased refusal probability associated with family (nondescript) (-28%) and parents (-16%), while presence of a girlfriend increased it (+28%). Negative situational factors like noted physical trauma (-62%), poor weather (-14%) and lack of housing (-14%) decreased refusal probability. Characteristics of the emergency response team, like a prior crew member encounter (+20%) or crew experience <1 year (-36%), had a variable association with transport.</p><p><strong>Conclusions: </strong>Refusal of emergency transport for opioid overdose cases in Washington, DC, USA, has expanded by 43.8% since 2017. Several social, environmental and systematic factors can predict this refusal. Logistic regression models can be used to quantify broad categories of behavior in surveillance medical research.</p>","PeriodicalId":109,"journal":{"name":"Addiction","volume":" ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictors of emergency medical transport refusal following opioid overdose in Washington, DC.\",\"authors\":\"Ben Turley, Kenan Zamore, Robert P Holman\",\"doi\":\"10.1111/add.16686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Patient initiated transport refusal during Emergency Medical Service (EMS) opioid overdose encounters has become an endemic problem. This study aimed to quantify circumstantial and environmental factors which predict refusal of further care.</p><p><strong>Design: </strong>In this cross-sectional analysis, a case definition for opioid overdose was applied retrospectively to EMS encounters. Selected cases had sociodemographic and situational/incident variables extracted using patient information and free text searches of case narratives. 50 unique binary variables were used to build a logistic model.</p><p><strong>Setting: </strong>Prehospital EMS overdose encounters in Washington, DC, USA, from July 2017 to July 2023.</p><p><strong>Participants: </strong>Of EMS encounters in the study timeframe, 14 587 cases were selected as opioid overdoses.</p><p><strong>Measurements: </strong>Predicted probability for covariates was the outcome variable. Model performance was assessed using Stratified K-Fold Cross-Validation and scored with positive predictive value, sensitivity and F1. Prediction accuracy and McFadden's pseudo-R squared are also determined.</p><p><strong>Findings: </strong>The model achieved a predictive accuracy of 78% with a high positive predictive value (0.83) and moderate sensitivity (0.68). Bystander type influenced the refusal outcome, with decreased refusal probability associated with family (nondescript) (-28%) and parents (-16%), while presence of a girlfriend increased it (+28%). Negative situational factors like noted physical trauma (-62%), poor weather (-14%) and lack of housing (-14%) decreased refusal probability. Characteristics of the emergency response team, like a prior crew member encounter (+20%) or crew experience <1 year (-36%), had a variable association with transport.</p><p><strong>Conclusions: </strong>Refusal of emergency transport for opioid overdose cases in Washington, DC, USA, has expanded by 43.8% since 2017. Several social, environmental and systematic factors can predict this refusal. Logistic regression models can be used to quantify broad categories of behavior in surveillance medical research.</p>\",\"PeriodicalId\":109,\"journal\":{\"name\":\"Addiction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Addiction\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/add.16686\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/add.16686","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:在急救医疗服务(EMS)遇到阿片类药物过量患者时,患者主动拒绝转运已成为一个地方性问题。本研究旨在量化可预测拒绝进一步治疗的环境因素:设计:在这项横断面分析中,对急救服务遭遇的阿片类药物过量病例进行了回顾性定义。利用患者信息和病例叙述的自由文本检索,对所选病例提取了社会人口和情景/事件变量。50 个独特的二元变量被用于建立逻辑模型:2017年7月至2023年7月期间在美国华盛顿特区发生的院前急救过量事件:在研究时间范围内的急救服务中,有 14 587 例被选为阿片类药物过量:共变量的预测概率是结果变量。使用分层 K 折交叉验证评估模型性能,并根据阳性预测值、灵敏度和 F1 进行评分。同时还确定了预测准确率和 McFadden 伪 R 平方:该模型的预测准确率为 78%,阳性预测值较高(0.83),灵敏度适中(0.68)。旁观者类型对拒绝结果有影响,与家人(无特征)(-28%)和父母(-16%)相关的拒绝概率降低,而女友的存在则增加了拒绝概率(+28%)。消极的情境因素,如已发现的身体创伤(-62%)、恶劣天气(-14%)和缺乏住房(-14%),都会降低拒绝概率。应急小组的特点,如之前遇到的机组人员(+20%)或机组人员的经验结论:自 2017 年以来,美国华盛顿特区阿片类药物过量病例拒绝紧急运送的情况增加了 43.8%。一些社会、环境和系统因素可以预测这种拒绝现象。逻辑回归模型可用于量化监测医学研究中的行为大类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictors of emergency medical transport refusal following opioid overdose in Washington, DC.

Background and aims: Patient initiated transport refusal during Emergency Medical Service (EMS) opioid overdose encounters has become an endemic problem. This study aimed to quantify circumstantial and environmental factors which predict refusal of further care.

Design: In this cross-sectional analysis, a case definition for opioid overdose was applied retrospectively to EMS encounters. Selected cases had sociodemographic and situational/incident variables extracted using patient information and free text searches of case narratives. 50 unique binary variables were used to build a logistic model.

Setting: Prehospital EMS overdose encounters in Washington, DC, USA, from July 2017 to July 2023.

Participants: Of EMS encounters in the study timeframe, 14 587 cases were selected as opioid overdoses.

Measurements: Predicted probability for covariates was the outcome variable. Model performance was assessed using Stratified K-Fold Cross-Validation and scored with positive predictive value, sensitivity and F1. Prediction accuracy and McFadden's pseudo-R squared are also determined.

Findings: The model achieved a predictive accuracy of 78% with a high positive predictive value (0.83) and moderate sensitivity (0.68). Bystander type influenced the refusal outcome, with decreased refusal probability associated with family (nondescript) (-28%) and parents (-16%), while presence of a girlfriend increased it (+28%). Negative situational factors like noted physical trauma (-62%), poor weather (-14%) and lack of housing (-14%) decreased refusal probability. Characteristics of the emergency response team, like a prior crew member encounter (+20%) or crew experience <1 year (-36%), had a variable association with transport.

Conclusions: Refusal of emergency transport for opioid overdose cases in Washington, DC, USA, has expanded by 43.8% since 2017. Several social, environmental and systematic factors can predict this refusal. Logistic regression models can be used to quantify broad categories of behavior in surveillance medical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Addiction
Addiction 医学-精神病学
CiteScore
10.80
自引率
6.70%
发文量
319
审稿时长
3 months
期刊介绍: Addiction publishes peer-reviewed research reports on pharmacological and behavioural addictions, bringing together research conducted within many different disciplines. Its goal is to serve international and interdisciplinary scientific and clinical communication, to strengthen links between science and policy, and to stimulate and enhance the quality of debate. We seek submissions that are not only technically competent but are also original and contain information or ideas of fresh interest to our international readership. We seek to serve low- and middle-income (LAMI) countries as well as more economically developed countries. Addiction’s scope spans human experimental, epidemiological, social science, historical, clinical and policy research relating to addiction, primarily but not exclusively in the areas of psychoactive substance use and/or gambling. In addition to original research, the journal features editorials, commentaries, reviews, letters, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信