{"title":"丹参酮 IIA 的电化学氧化位点选择性直接 C-H 活化。","authors":"Jingyi Zhang, Shan Han, Siao Lu, Minghan Li, Zixun Gao, Linyu Zheng, Yulin Feng, Fangling Lu","doi":"10.1039/d4ob01479k","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products play a pivotal role in the advancement of state-of-the-art pharmaceuticals. To augment their therapeutic efficacy, structural modifications of these compounds are routinely performed. In this study, we introduce an efficient and environmentally benign electrochemical oxidative method for site-selective direct C-H activation of tanshinone IIA under metal-free, oxidant-free, and base-free conditions. Moderate to excellent yields up to 92% of the desired tanshinone IIA derivatives were obtained with a broad substrate scope. Biological activity assays demonstrate that compounds 2k, 2q and 2w possess superior antitumor efficacy compared to tanshinone IIA.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical oxidative site-selective direct C-H activation of tanshinone IIA.\",\"authors\":\"Jingyi Zhang, Shan Han, Siao Lu, Minghan Li, Zixun Gao, Linyu Zheng, Yulin Feng, Fangling Lu\",\"doi\":\"10.1039/d4ob01479k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural products play a pivotal role in the advancement of state-of-the-art pharmaceuticals. To augment their therapeutic efficacy, structural modifications of these compounds are routinely performed. In this study, we introduce an efficient and environmentally benign electrochemical oxidative method for site-selective direct C-H activation of tanshinone IIA under metal-free, oxidant-free, and base-free conditions. Moderate to excellent yields up to 92% of the desired tanshinone IIA derivatives were obtained with a broad substrate scope. Biological activity assays demonstrate that compounds 2k, 2q and 2w possess superior antitumor efficacy compared to tanshinone IIA.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ob01479k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01479k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Electrochemical oxidative site-selective direct C-H activation of tanshinone IIA.
Natural products play a pivotal role in the advancement of state-of-the-art pharmaceuticals. To augment their therapeutic efficacy, structural modifications of these compounds are routinely performed. In this study, we introduce an efficient and environmentally benign electrochemical oxidative method for site-selective direct C-H activation of tanshinone IIA under metal-free, oxidant-free, and base-free conditions. Moderate to excellent yields up to 92% of the desired tanshinone IIA derivatives were obtained with a broad substrate scope. Biological activity assays demonstrate that compounds 2k, 2q and 2w possess superior antitumor efficacy compared to tanshinone IIA.