Fengyang Wang, Mohammad Morsali, Jānis Rižikovs, Ievgen Pylypchuk, Aji P Mathew, Mika H Sipponen
{"title":"提取自树皮的全生物基防水木器涂料。","authors":"Fengyang Wang, Mohammad Morsali, Jānis Rižikovs, Ievgen Pylypchuk, Aji P Mathew, Mika H Sipponen","doi":"10.1039/d4mh01010h","DOIUrl":null,"url":null,"abstract":"<p><p>Surface protection is essential when using wood as a construction material. However, the industry lacks sustainable alternatives to replace the presently dominant fossil-based synthetic water-resistant coatings. Here, we show a fully bio-based wood surface protection system using components sourced from birch bark and spruce bark, inspired by the natural barrier function of bark in trees. The coating formulation contains suberinic acids and spruce bark polyphenols, resulting in a waterborne suspension that is safe and easy to apply to wood. The polyphenols play a dual role in the formulation as they stabilize the water-insoluble suberinic acids and serve as nanofillers in the thermally cured coating, enabling the adjustment of the mechanical properties of the resulting coating. When applied to spruce wood, the coating formulation with 10% polyphenol and 90% suberinic acids achieved a water absorption value of 100 g m<sup>-2</sup> after 72 hours of water exposure, demonstrating superior performance compared to an alkyd emulsion coating. We conclude that instead of combusting tree bark, it can serve as a valuable resource for wood protection, closing the circle in the wood processing industry.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully bio-based water-resistant wood coatings derived from tree bark.\",\"authors\":\"Fengyang Wang, Mohammad Morsali, Jānis Rižikovs, Ievgen Pylypchuk, Aji P Mathew, Mika H Sipponen\",\"doi\":\"10.1039/d4mh01010h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface protection is essential when using wood as a construction material. However, the industry lacks sustainable alternatives to replace the presently dominant fossil-based synthetic water-resistant coatings. Here, we show a fully bio-based wood surface protection system using components sourced from birch bark and spruce bark, inspired by the natural barrier function of bark in trees. The coating formulation contains suberinic acids and spruce bark polyphenols, resulting in a waterborne suspension that is safe and easy to apply to wood. The polyphenols play a dual role in the formulation as they stabilize the water-insoluble suberinic acids and serve as nanofillers in the thermally cured coating, enabling the adjustment of the mechanical properties of the resulting coating. When applied to spruce wood, the coating formulation with 10% polyphenol and 90% suberinic acids achieved a water absorption value of 100 g m<sup>-2</sup> after 72 hours of water exposure, demonstrating superior performance compared to an alkyd emulsion coating. We conclude that instead of combusting tree bark, it can serve as a valuable resource for wood protection, closing the circle in the wood processing industry.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01010h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01010h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在使用木材作为建筑材料时,表面保护至关重要。然而,该行业缺乏可持续的替代品来取代目前占主导地位的化石基合成防水涂料。受树皮天然屏障功能的启发,我们在这里展示了一种完全基于生物的木材表面保护系统,其成分来自桦树皮和云杉树皮。涂料配方中含有亚树脂酸和云杉树皮多酚,形成的水性悬浮液安全且易于涂抹到木材上。多酚在配方中起着双重作用,它们既能稳定不溶于水的亚单宁酸,又能作为热固化涂层中的纳米填料,从而调整涂层的机械性能。将含有 10% 多酚和 90% 亚贝壳苷酸的涂料配方应用于云杉木材时,经过 72 小时的水暴露后,其吸水值达到 100 g m-2,与醇酸乳液涂料相比,表现出更优越的性能。我们的结论是,树皮可以作为保护木材的宝贵资源,而不是将其燃烧,从而为木材加工业带来新的发展。
Fully bio-based water-resistant wood coatings derived from tree bark.
Surface protection is essential when using wood as a construction material. However, the industry lacks sustainable alternatives to replace the presently dominant fossil-based synthetic water-resistant coatings. Here, we show a fully bio-based wood surface protection system using components sourced from birch bark and spruce bark, inspired by the natural barrier function of bark in trees. The coating formulation contains suberinic acids and spruce bark polyphenols, resulting in a waterborne suspension that is safe and easy to apply to wood. The polyphenols play a dual role in the formulation as they stabilize the water-insoluble suberinic acids and serve as nanofillers in the thermally cured coating, enabling the adjustment of the mechanical properties of the resulting coating. When applied to spruce wood, the coating formulation with 10% polyphenol and 90% suberinic acids achieved a water absorption value of 100 g m-2 after 72 hours of water exposure, demonstrating superior performance compared to an alkyd emulsion coating. We conclude that instead of combusting tree bark, it can serve as a valuable resource for wood protection, closing the circle in the wood processing industry.