Xiaoxia Wang, Zhongneng Yang, Xiao-Min Ren, Zhenghuan Zhang, Huan He and Xuejun Pan
{"title":"评估微塑料和纳米塑料对人体肠道 Caco-2 细胞的细胞毒性以及儿茶素的保护作用。","authors":"Xiaoxia Wang, Zhongneng Yang, Xiao-Min Ren, Zhenghuan Zhang, Huan He and Xuejun Pan","doi":"10.1039/D4EM00408F","DOIUrl":null,"url":null,"abstract":"<p >Micro- and nano-plastics (M/NPs) potentially leach from plastic wrapping into food and beverages. However, the risks of ingested M/NPs to human intestinal health remain unclear. This study aimed to determine the potential risks and mechanisms of PS-M/NPs using a human intestinal epithelial <em>in vitro</em> model and to explore protective measures to reduce these risks. The results showed that polystyrene (PS) M/NPs exhibited size-dependent cytotoxicity (3 μm < 0.3 μm < 80 nm < 20 nm). Additionally, by measuring intracellular reactive oxygen species (ROS) production after exposure to PS-M/NPs and the elimination of ROS by <em>N</em>-acetyl-<small>L</small>-cysteine, we identified oxidative stress as a mechanism of PS-M/NP-induced cytotoxicity. Hazard quotients calculated from the study indicated that the risks of M/NPs derived from plastic teabags exceeded the margin of safety, suggesting that ingested M/NPs potentially pose a risk to human intestinal health. Furthermore, this study found that catechins can reduce the adverse effects of M/NPs, so we propose that drinking tea may offer a protective effect against the harm of M/NPs on the intestinal system.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 12","pages":" 2166-2176"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the cytotoxicity micro- and nano-plastic on human intestinal Caco-2 cells and the protective effects of catechin†\",\"authors\":\"Xiaoxia Wang, Zhongneng Yang, Xiao-Min Ren, Zhenghuan Zhang, Huan He and Xuejun Pan\",\"doi\":\"10.1039/D4EM00408F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Micro- and nano-plastics (M/NPs) potentially leach from plastic wrapping into food and beverages. However, the risks of ingested M/NPs to human intestinal health remain unclear. This study aimed to determine the potential risks and mechanisms of PS-M/NPs using a human intestinal epithelial <em>in vitro</em> model and to explore protective measures to reduce these risks. The results showed that polystyrene (PS) M/NPs exhibited size-dependent cytotoxicity (3 μm < 0.3 μm < 80 nm < 20 nm). Additionally, by measuring intracellular reactive oxygen species (ROS) production after exposure to PS-M/NPs and the elimination of ROS by <em>N</em>-acetyl-<small>L</small>-cysteine, we identified oxidative stress as a mechanism of PS-M/NP-induced cytotoxicity. Hazard quotients calculated from the study indicated that the risks of M/NPs derived from plastic teabags exceeded the margin of safety, suggesting that ingested M/NPs potentially pose a risk to human intestinal health. Furthermore, this study found that catechins can reduce the adverse effects of M/NPs, so we propose that drinking tea may offer a protective effect against the harm of M/NPs on the intestinal system.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 12\",\"pages\":\" 2166-2176\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00408f\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00408f","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Assessment of the cytotoxicity micro- and nano-plastic on human intestinal Caco-2 cells and the protective effects of catechin†
Micro- and nano-plastics (M/NPs) potentially leach from plastic wrapping into food and beverages. However, the risks of ingested M/NPs to human intestinal health remain unclear. This study aimed to determine the potential risks and mechanisms of PS-M/NPs using a human intestinal epithelial in vitro model and to explore protective measures to reduce these risks. The results showed that polystyrene (PS) M/NPs exhibited size-dependent cytotoxicity (3 μm < 0.3 μm < 80 nm < 20 nm). Additionally, by measuring intracellular reactive oxygen species (ROS) production after exposure to PS-M/NPs and the elimination of ROS by N-acetyl-L-cysteine, we identified oxidative stress as a mechanism of PS-M/NP-induced cytotoxicity. Hazard quotients calculated from the study indicated that the risks of M/NPs derived from plastic teabags exceeded the margin of safety, suggesting that ingested M/NPs potentially pose a risk to human intestinal health. Furthermore, this study found that catechins can reduce the adverse effects of M/NPs, so we propose that drinking tea may offer a protective effect against the harm of M/NPs on the intestinal system.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.