Linna Song, Jianwen Han, Mingda Sui, Zihao Wei, Yunpeng Qin, Yuan Lu, Jiaojian Song, Wangquan Ye, Jinjia Guo
{"title":"用于水溶液中金属元素分析的固体基底辅助增强型激光诱导击穿光谱仪。","authors":"Linna Song, Jianwen Han, Mingda Sui, Zihao Wei, Yunpeng Qin, Yuan Lu, Jiaojian Song, Wangquan Ye, Jinjia Guo","doi":"10.1039/d4ay01551g","DOIUrl":null,"url":null,"abstract":"<p><p>Due to plasma quenching caused by the dense water medium, laser-induced breakdown spectroscopy (LIBS) faces challenges such as strong continuous background radiation and weak and broadened characteristic spectral lines when directly detecting metal elements in liquids. In this work, we introduced a simple approach to improve underwater LIBS signals with a solid substrate-assisted method, which requires no sample pre-treatment and simple operation and thus has potential for <i>in situ</i> marine applications. In this method, four submerged solid substrates (Zn, Cu, Ni, and Si) were employed to investigate the breakdown characteristics of underwater LIBS and the mechanism of spectral enhancement by using a CaCl<sub>2</sub> solution. The results demonstrated a significant improvement in the detection sensitivity of Ca with these substrates even at a short laser pulse with a relatively low laser energy (10 mJ). Among them, the semiconductor Si substrate exhibited the best enhancement effect, with an enhancement factor of over 75 for the Ca ionic lines at 393.4 nm and 396.8 nm and an enhancement factor of 29 for the Ca atomic line at 422.7 nm, respectively. This is mainly because the presence of substrate decreases the breakdown threshold of the liquid sample, and a higher plasma excitation temperature and electron density are obtained, which, in turn, leads to higher signal intensity. Furthermore, significant plasma emission enhancements for a wide range of elements are also achieved from seawater. These findings can contribute to the development of compact underwater <i>in situ</i> LIBS sensors with low power consumption, while ensuring high detection sensitivity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid substrate assisted enhanced laser induced breakdown spectroscopy for metal element analysis in aqueous solution.\",\"authors\":\"Linna Song, Jianwen Han, Mingda Sui, Zihao Wei, Yunpeng Qin, Yuan Lu, Jiaojian Song, Wangquan Ye, Jinjia Guo\",\"doi\":\"10.1039/d4ay01551g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to plasma quenching caused by the dense water medium, laser-induced breakdown spectroscopy (LIBS) faces challenges such as strong continuous background radiation and weak and broadened characteristic spectral lines when directly detecting metal elements in liquids. In this work, we introduced a simple approach to improve underwater LIBS signals with a solid substrate-assisted method, which requires no sample pre-treatment and simple operation and thus has potential for <i>in situ</i> marine applications. In this method, four submerged solid substrates (Zn, Cu, Ni, and Si) were employed to investigate the breakdown characteristics of underwater LIBS and the mechanism of spectral enhancement by using a CaCl<sub>2</sub> solution. The results demonstrated a significant improvement in the detection sensitivity of Ca with these substrates even at a short laser pulse with a relatively low laser energy (10 mJ). Among them, the semiconductor Si substrate exhibited the best enhancement effect, with an enhancement factor of over 75 for the Ca ionic lines at 393.4 nm and 396.8 nm and an enhancement factor of 29 for the Ca atomic line at 422.7 nm, respectively. This is mainly because the presence of substrate decreases the breakdown threshold of the liquid sample, and a higher plasma excitation temperature and electron density are obtained, which, in turn, leads to higher signal intensity. Furthermore, significant plasma emission enhancements for a wide range of elements are also achieved from seawater. These findings can contribute to the development of compact underwater <i>in situ</i> LIBS sensors with low power consumption, while ensuring high detection sensitivity.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ay01551g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01551g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Solid substrate assisted enhanced laser induced breakdown spectroscopy for metal element analysis in aqueous solution.
Due to plasma quenching caused by the dense water medium, laser-induced breakdown spectroscopy (LIBS) faces challenges such as strong continuous background radiation and weak and broadened characteristic spectral lines when directly detecting metal elements in liquids. In this work, we introduced a simple approach to improve underwater LIBS signals with a solid substrate-assisted method, which requires no sample pre-treatment and simple operation and thus has potential for in situ marine applications. In this method, four submerged solid substrates (Zn, Cu, Ni, and Si) were employed to investigate the breakdown characteristics of underwater LIBS and the mechanism of spectral enhancement by using a CaCl2 solution. The results demonstrated a significant improvement in the detection sensitivity of Ca with these substrates even at a short laser pulse with a relatively low laser energy (10 mJ). Among them, the semiconductor Si substrate exhibited the best enhancement effect, with an enhancement factor of over 75 for the Ca ionic lines at 393.4 nm and 396.8 nm and an enhancement factor of 29 for the Ca atomic line at 422.7 nm, respectively. This is mainly because the presence of substrate decreases the breakdown threshold of the liquid sample, and a higher plasma excitation temperature and electron density are obtained, which, in turn, leads to higher signal intensity. Furthermore, significant plasma emission enhancements for a wide range of elements are also achieved from seawater. These findings can contribute to the development of compact underwater in situ LIBS sensors with low power consumption, while ensuring high detection sensitivity.