硅酸镁单体 MgSiO3 和 Mg2SiO4 形成的计算机理分析。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-24 Epub Date: 2024-10-14 DOI:10.1021/acs.jpca.4c05680
Athena R Flint, Ryan C Fortenberry
{"title":"硅酸镁单体 MgSiO3 和 Mg2SiO4 形成的计算机理分析。","authors":"Athena R Flint, Ryan C Fortenberry","doi":"10.1021/acs.jpca.4c05680","DOIUrl":null,"url":null,"abstract":"<p><p>Silicate grains comprise a large fraction of cosmic dust, motivating a need to understand how they form. The current body of work on silicates generally reflects the abundance of silicate grains, yet models for their formation often do not consider silicate chemistry on the smallest scale, which can form species available for dust grain nucleation processes. In order to expand upon previous attempts to bridge this gap in silicate chemistry, novel gas-phase reaction pathways for the magnesium silicate monomers enstatite (MgSiO<sub>3</sub>) and forsterite (Mg<sub>2</sub>SiO<sub>4</sub>) from MgH, H<sub>2</sub>O, and SiO are presently computed using highly accurate quantum chemical calculations. MgSiO<sub>3</sub> and Mg<sub>2</sub>SiO<sub>4</sub> form through a series of reactions that initially excludes silicon addition, creating the elusive species MgOH and Mg<sub>2</sub>O prior to further reaction. The formation of the two silicate monomers is expected to be efficient with the primary bottleneck being the amount of MgH available for reaction. The addition of these reactions to cosmic chemical networks will add further clarity to the processes that govern dust formation, most significantly for those occurring within stellar outflows of asymptotic giant branch stars.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Mechanistic Analysis of the Formation of the Magnesium Silicate Monomers MgSiO<sub>3</sub> and Mg<sub>2</sub>SiO<sub>4</sub>.\",\"authors\":\"Athena R Flint, Ryan C Fortenberry\",\"doi\":\"10.1021/acs.jpca.4c05680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silicate grains comprise a large fraction of cosmic dust, motivating a need to understand how they form. The current body of work on silicates generally reflects the abundance of silicate grains, yet models for their formation often do not consider silicate chemistry on the smallest scale, which can form species available for dust grain nucleation processes. In order to expand upon previous attempts to bridge this gap in silicate chemistry, novel gas-phase reaction pathways for the magnesium silicate monomers enstatite (MgSiO<sub>3</sub>) and forsterite (Mg<sub>2</sub>SiO<sub>4</sub>) from MgH, H<sub>2</sub>O, and SiO are presently computed using highly accurate quantum chemical calculations. MgSiO<sub>3</sub> and Mg<sub>2</sub>SiO<sub>4</sub> form through a series of reactions that initially excludes silicon addition, creating the elusive species MgOH and Mg<sub>2</sub>O prior to further reaction. The formation of the two silicate monomers is expected to be efficient with the primary bottleneck being the amount of MgH available for reaction. The addition of these reactions to cosmic chemical networks will add further clarity to the processes that govern dust formation, most significantly for those occurring within stellar outflows of asymptotic giant branch stars.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c05680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

硅酸盐颗粒占宇宙尘埃的很大一部分,因此需要了解它们是如何形成的。目前有关硅酸盐的研究成果普遍反映了硅酸盐晶粒的丰度,然而它们的形成模型往往没有考虑最小尺度的硅酸盐化学,而这种化学可以形成尘粒成核过程中可用的物种。为了进一步弥补硅酸盐化学领域的这一空白,我们利用高精度的量子化学计算,计算了硅酸镁单质芒硝(MgSiO3)和芒硝(Mg2SiO4)与 MgH、H2O 和 SiO 的新型气相反应途径。MgSiO3 和 Mg2SiO4 是通过一系列反应形成的,这些反应最初排除了硅的添加,在进一步反应之前生成了难以捉摸的 MgOH 和 Mg2O 物种。这两种硅酸盐单体的形成预计是高效的,主要瓶颈是可用于反应的 MgH 的数量。将这些反应添加到宇宙化学网络中,将进一步阐明尘埃的形成过程,其中最重要的是那些发生在渐近巨枝恒星外流中的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Mechanistic Analysis of the Formation of the Magnesium Silicate Monomers MgSiO3 and Mg2SiO4.

Silicate grains comprise a large fraction of cosmic dust, motivating a need to understand how they form. The current body of work on silicates generally reflects the abundance of silicate grains, yet models for their formation often do not consider silicate chemistry on the smallest scale, which can form species available for dust grain nucleation processes. In order to expand upon previous attempts to bridge this gap in silicate chemistry, novel gas-phase reaction pathways for the magnesium silicate monomers enstatite (MgSiO3) and forsterite (Mg2SiO4) from MgH, H2O, and SiO are presently computed using highly accurate quantum chemical calculations. MgSiO3 and Mg2SiO4 form through a series of reactions that initially excludes silicon addition, creating the elusive species MgOH and Mg2O prior to further reaction. The formation of the two silicate monomers is expected to be efficient with the primary bottleneck being the amount of MgH available for reaction. The addition of these reactions to cosmic chemical networks will add further clarity to the processes that govern dust formation, most significantly for those occurring within stellar outflows of asymptotic giant branch stars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信