UltraStat:利用贝叶斯推理超越傅立叶极限的超快光谱学。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-24 Epub Date: 2024-10-16 DOI:10.1021/acs.jpca.4c04385
Elad Harel
{"title":"UltraStat:利用贝叶斯推理超越傅立叶极限的超快光谱学。","authors":"Elad Harel","doi":"10.1021/acs.jpca.4c04385","DOIUrl":null,"url":null,"abstract":"<p><p>The discrete Fourier transform (dFT) plays a central role in many ultrafast experiments, allowing the recovery of spectroscopic observables from time-domain measurements. In resonant experiments when population relaxation and coherence components of the signal coexist, the dFT is usually preceded by multiexponential fitting to remove the large population term. However, this procedure results in errors in both the recovered decay rates and the line shapes of the coherence spectral components. While other methods such as linear prediction singular value decomposition fit both terms simultaneously, they are limited to specific models that may not represent the true signal. These methods do not allow for systematic noise analysis or error estimation and require <i>a priori</i> knowledge of the signal rank. Here, we describe a general approach to parameter estimation in ultrafast spectroscopy─<i>UltraStat</i>─grounded in Bayesian analysis without the limitations set by Fourier theory. Using simulated, but realistic data, we demonstrate in a statistical sense how <i>UltraStat</i> provides accurate parameter estimation in the presence of many experimental constraints: noise, signal truncation, limited photon budget, and nonuniform sampling. <i>UltraStat</i> provides superior resolution compared to the dFT, up to an order of magnitude in cases where the line shapes are well-approximated. In these cases, we establish that primarily noise, not sampling, limits spectral resolution. Moreover, we show that subsampling may reduce the number of acquired points by 90% compared to the Nyquist-Shannon criteria. <i>UltraStat</i> greatly improves parameter estimation by providing statistically bound spectral and dynamics analysis, pushing the limits of ultrafast science.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514019/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>UltraStat</i>: Ultrafast Spectroscopy beyond the Fourier Limit Using Bayesian Inference.\",\"authors\":\"Elad Harel\",\"doi\":\"10.1021/acs.jpca.4c04385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discrete Fourier transform (dFT) plays a central role in many ultrafast experiments, allowing the recovery of spectroscopic observables from time-domain measurements. In resonant experiments when population relaxation and coherence components of the signal coexist, the dFT is usually preceded by multiexponential fitting to remove the large population term. However, this procedure results in errors in both the recovered decay rates and the line shapes of the coherence spectral components. While other methods such as linear prediction singular value decomposition fit both terms simultaneously, they are limited to specific models that may not represent the true signal. These methods do not allow for systematic noise analysis or error estimation and require <i>a priori</i> knowledge of the signal rank. Here, we describe a general approach to parameter estimation in ultrafast spectroscopy─<i>UltraStat</i>─grounded in Bayesian analysis without the limitations set by Fourier theory. Using simulated, but realistic data, we demonstrate in a statistical sense how <i>UltraStat</i> provides accurate parameter estimation in the presence of many experimental constraints: noise, signal truncation, limited photon budget, and nonuniform sampling. <i>UltraStat</i> provides superior resolution compared to the dFT, up to an order of magnitude in cases where the line shapes are well-approximated. In these cases, we establish that primarily noise, not sampling, limits spectral resolution. Moreover, we show that subsampling may reduce the number of acquired points by 90% compared to the Nyquist-Shannon criteria. <i>UltraStat</i> greatly improves parameter estimation by providing statistically bound spectral and dynamics analysis, pushing the limits of ultrafast science.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

离散傅立叶变换(dFT)在许多超快实验中发挥着核心作用,它允许从时域测量中恢复光谱观测值。在共振实验中,当信号的种群弛豫和相干成分共存时,dFT 通常先进行多指数拟合,以去除大的种群项。然而,这一过程会导致恢复的衰减率和相干光谱成分的线形出现误差。虽然线性预测奇异值分解等其他方法可以同时拟合两个项,但它们仅限于特定的模型,可能无法代表真实的信号。这些方法无法进行系统噪声分析或误差估计,而且需要先验的信号等级知识。在此,我们介绍一种基于贝叶斯分析的超快光谱参数估计通用方法--UltraStat--不受傅立叶理论的限制。我们使用模拟但真实的数据,从统计学意义上展示了 UltraStat 如何在存在许多实验限制(噪声、信号截断、有限的光子预算和非均匀采样)的情况下提供精确的参数估计。与 dFT 相比,UltraStat 提供了更高的分辨率,在线形近似的情况下,分辨率可达一个数量级。在这些情况下,我们确定主要是噪声而不是采样限制了光谱分辨率。此外,我们还证明,与奈奎斯特-香农标准相比,子采样可减少 90% 的采集点数量。UltraStat 通过提供具有统计学约束的光谱和动力学分析,极大地改进了参数估计,突破了超快科学的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UltraStat: Ultrafast Spectroscopy beyond the Fourier Limit Using Bayesian Inference.

The discrete Fourier transform (dFT) plays a central role in many ultrafast experiments, allowing the recovery of spectroscopic observables from time-domain measurements. In resonant experiments when population relaxation and coherence components of the signal coexist, the dFT is usually preceded by multiexponential fitting to remove the large population term. However, this procedure results in errors in both the recovered decay rates and the line shapes of the coherence spectral components. While other methods such as linear prediction singular value decomposition fit both terms simultaneously, they are limited to specific models that may not represent the true signal. These methods do not allow for systematic noise analysis or error estimation and require a priori knowledge of the signal rank. Here, we describe a general approach to parameter estimation in ultrafast spectroscopy─UltraStat─grounded in Bayesian analysis without the limitations set by Fourier theory. Using simulated, but realistic data, we demonstrate in a statistical sense how UltraStat provides accurate parameter estimation in the presence of many experimental constraints: noise, signal truncation, limited photon budget, and nonuniform sampling. UltraStat provides superior resolution compared to the dFT, up to an order of magnitude in cases where the line shapes are well-approximated. In these cases, we establish that primarily noise, not sampling, limits spectral resolution. Moreover, we show that subsampling may reduce the number of acquired points by 90% compared to the Nyquist-Shannon criteria. UltraStat greatly improves parameter estimation by providing statistically bound spectral and dynamics analysis, pushing the limits of ultrafast science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信