Maxim Egorov, Jean-Yves Goujon, Marie Sicard, Christelle Moal, Samuel Pairel, Ronan Le Bot
{"title":"HBP-Vectorized Methotrexate Prodrug Molecule 1102-39 的设计、合成和表征:细胞培养模型体外细胞毒性活性评估、啮齿动物体内安全性和有效性初步结果。","authors":"Maxim Egorov, Jean-Yves Goujon, Marie Sicard, Christelle Moal, Samuel Pairel, Ronan Le Bot","doi":"10.1021/acsomega.4c06029","DOIUrl":null,"url":null,"abstract":"<p><p>A novel bone-targeted prodrug, 1102-39, is discussed with the aim of enhancing the therapeutic effects of methotrexate (MTX) within bone tissues while minimizing systemic toxicity. Within the 1102-39 molecule, the central linker part forms a cleavable ester group, with MTX being also linked by a stable imine bond to the specially designed hydroxybisphosphonic (HBP) vector. Synthesized through a convergent approach starting from MTX, this prodrug advantageously modulates MTX's activity by selective esterification of its α-carboxyl group. In vitro tests revealed a 10-fold reduction in cytotoxicity compared to standard MTX, in alignment with prodrug behavior and correlated with gradual MTX release. In vivo in rodents, 1102-39 displayed preliminary encouraging antitumor effects on orthotopic osteosarcoma. Furthermore, various aspects of designing molecules for selective therapy in bone tissue based on bisphosphonate molecules as vectors for delivering active compounds to the bone are discussed. The 1102-39 molecule exhibits strong affinity for hydroxyapatite and a progressive release of MTX in aqueous environments, enhancing the safety and efficacy of bone-specific treatments and enabling sustained activity within bone and bone joints in the therapy of tumor and inflammation.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 41","pages":"42433-42447"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, and Characterization of HBP-Vectorized Methotrexate Prodrug Molecule 1102-39: Evaluation of In Vitro Cytotoxicity Activity in Cell Culture Models, Preliminary In Vivo Safety and Efficacy Results in Rodents.\",\"authors\":\"Maxim Egorov, Jean-Yves Goujon, Marie Sicard, Christelle Moal, Samuel Pairel, Ronan Le Bot\",\"doi\":\"10.1021/acsomega.4c06029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel bone-targeted prodrug, 1102-39, is discussed with the aim of enhancing the therapeutic effects of methotrexate (MTX) within bone tissues while minimizing systemic toxicity. Within the 1102-39 molecule, the central linker part forms a cleavable ester group, with MTX being also linked by a stable imine bond to the specially designed hydroxybisphosphonic (HBP) vector. Synthesized through a convergent approach starting from MTX, this prodrug advantageously modulates MTX's activity by selective esterification of its α-carboxyl group. In vitro tests revealed a 10-fold reduction in cytotoxicity compared to standard MTX, in alignment with prodrug behavior and correlated with gradual MTX release. In vivo in rodents, 1102-39 displayed preliminary encouraging antitumor effects on orthotopic osteosarcoma. Furthermore, various aspects of designing molecules for selective therapy in bone tissue based on bisphosphonate molecules as vectors for delivering active compounds to the bone are discussed. The 1102-39 molecule exhibits strong affinity for hydroxyapatite and a progressive release of MTX in aqueous environments, enhancing the safety and efficacy of bone-specific treatments and enabling sustained activity within bone and bone joints in the therapy of tumor and inflammation.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 41\",\"pages\":\"42433-42447\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c06029\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c06029","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design, Synthesis, and Characterization of HBP-Vectorized Methotrexate Prodrug Molecule 1102-39: Evaluation of In Vitro Cytotoxicity Activity in Cell Culture Models, Preliminary In Vivo Safety and Efficacy Results in Rodents.
A novel bone-targeted prodrug, 1102-39, is discussed with the aim of enhancing the therapeutic effects of methotrexate (MTX) within bone tissues while minimizing systemic toxicity. Within the 1102-39 molecule, the central linker part forms a cleavable ester group, with MTX being also linked by a stable imine bond to the specially designed hydroxybisphosphonic (HBP) vector. Synthesized through a convergent approach starting from MTX, this prodrug advantageously modulates MTX's activity by selective esterification of its α-carboxyl group. In vitro tests revealed a 10-fold reduction in cytotoxicity compared to standard MTX, in alignment with prodrug behavior and correlated with gradual MTX release. In vivo in rodents, 1102-39 displayed preliminary encouraging antitumor effects on orthotopic osteosarcoma. Furthermore, various aspects of designing molecules for selective therapy in bone tissue based on bisphosphonate molecules as vectors for delivering active compounds to the bone are discussed. The 1102-39 molecule exhibits strong affinity for hydroxyapatite and a progressive release of MTX in aqueous environments, enhancing the safety and efficacy of bone-specific treatments and enabling sustained activity within bone and bone joints in the therapy of tumor and inflammation.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.