{"title":"用于靶向声动力疗法的肿瘤微环境响应性锌(II)卟啉纳米吸附剂","authors":"Jiaxin Li, Zhitong Zhao, Yongchang Tian, Wenchang Liu, Peng Zhang, Li Chen","doi":"10.1021/acsbiomaterials.4c00344","DOIUrl":null,"url":null,"abstract":"<p><p>As a novel noninvasive tumor therapy, sonodynamic therapy (SDT) attracts booming concerns. However, the limited water solubility, inadequate biocompatibility, and low targeting ability of conventional sonosensitizers significantly hinder their potential for clinical application. Herein, novel zinc(II)-porphyrin nanotheranostics (HA@Zn-TCPP) were fabricated in which the zinc(II)-porphyrin (TCPP) metal-organic framework was first constructed by a simple thermal reaction, followed by the addition of hyaluronic acid (HA) for modification. The specific targeting ability of HA facilitated the internalization of HA@Zn-TCPP within tumor cells, resulting in its preferential accumulation in tumor tissues that exhibit CD44 receptor overexpression. The acidic tumor microenvironment induced the rapid decomposition of HA@Zn-TCPP, releasing free TCPP for activating SDT. This controllable generation of reactive oxygen species (ROS) could effectively decrease damage to normal tissues. The HA@Zn-TCPP exhibited remarkable antitumor effects in experiments, achieving a tumor inhibition rate of up to 82.1% when under ultrasound. This finding provides an imperative strategy to develop novel sonosensitizers for enhanced SDT.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor Microenvironment-Responsive Zn(II)-Porphyrin Nanotheranostics for Targeted Sonodynamic Therapy.\",\"authors\":\"Jiaxin Li, Zhitong Zhao, Yongchang Tian, Wenchang Liu, Peng Zhang, Li Chen\",\"doi\":\"10.1021/acsbiomaterials.4c00344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a novel noninvasive tumor therapy, sonodynamic therapy (SDT) attracts booming concerns. However, the limited water solubility, inadequate biocompatibility, and low targeting ability of conventional sonosensitizers significantly hinder their potential for clinical application. Herein, novel zinc(II)-porphyrin nanotheranostics (HA@Zn-TCPP) were fabricated in which the zinc(II)-porphyrin (TCPP) metal-organic framework was first constructed by a simple thermal reaction, followed by the addition of hyaluronic acid (HA) for modification. The specific targeting ability of HA facilitated the internalization of HA@Zn-TCPP within tumor cells, resulting in its preferential accumulation in tumor tissues that exhibit CD44 receptor overexpression. The acidic tumor microenvironment induced the rapid decomposition of HA@Zn-TCPP, releasing free TCPP for activating SDT. This controllable generation of reactive oxygen species (ROS) could effectively decrease damage to normal tissues. The HA@Zn-TCPP exhibited remarkable antitumor effects in experiments, achieving a tumor inhibition rate of up to 82.1% when under ultrasound. This finding provides an imperative strategy to develop novel sonosensitizers for enhanced SDT.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00344\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00344","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tumor Microenvironment-Responsive Zn(II)-Porphyrin Nanotheranostics for Targeted Sonodynamic Therapy.
As a novel noninvasive tumor therapy, sonodynamic therapy (SDT) attracts booming concerns. However, the limited water solubility, inadequate biocompatibility, and low targeting ability of conventional sonosensitizers significantly hinder their potential for clinical application. Herein, novel zinc(II)-porphyrin nanotheranostics (HA@Zn-TCPP) were fabricated in which the zinc(II)-porphyrin (TCPP) metal-organic framework was first constructed by a simple thermal reaction, followed by the addition of hyaluronic acid (HA) for modification. The specific targeting ability of HA facilitated the internalization of HA@Zn-TCPP within tumor cells, resulting in its preferential accumulation in tumor tissues that exhibit CD44 receptor overexpression. The acidic tumor microenvironment induced the rapid decomposition of HA@Zn-TCPP, releasing free TCPP for activating SDT. This controllable generation of reactive oxygen species (ROS) could effectively decrease damage to normal tissues. The HA@Zn-TCPP exhibited remarkable antitumor effects in experiments, achieving a tumor inhibition rate of up to 82.1% when under ultrasound. This finding provides an imperative strategy to develop novel sonosensitizers for enhanced SDT.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture