立方氮化硼粉末的粒度对多晶立方氮化硼复合材料性能的影响

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Changjiang Xiao, Haoyu Zheng, Hongjun Tao, Jinming Ma, qunfei Zhang, Lihui Tang
{"title":"立方氮化硼粉末的粒度对多晶立方氮化硼复合材料性能的影响","authors":"Changjiang Xiao,&nbsp;Haoyu Zheng,&nbsp;Hongjun Tao,&nbsp;Jinming Ma,&nbsp;qunfei Zhang,&nbsp;Lihui Tang","doi":"10.1007/s12034-024-03326-w","DOIUrl":null,"url":null,"abstract":"<div><p>Polycrystalline cubic boron nitride (PcBN) composites were prepared through high-temperature and high-pressure (HTHP) sintering process. Cubic boron nitride (cBN) powders with particle sizes of 0.2, 1, 3, and 8 μm were selected as raw materials, and Al-Co-TiN was employed as a binder. The effect of particle size of initial cBN powders on the microstructure, relative density, flexural strength, microhardness, fracture toughness and abrasive ratio of sintered PcBN composite were systematically studied. The results showed that synthesized products were mostly made of cBN, TiN, AlN, TiB<sub>2</sub> and CoN phases. The mechanical properties of sintered PcBN composites first increased and then decreased with a reduction in the particle size of cBN powders. When the particle size of initial cBN powder was 1 µm, the binder was observed to be evenly distributed around the cBN grains in the sintered product. Moreover, there was a close bonding between cBN grains and the binder in the sintered product when the particle size of initial cBN powders was 1 µm, consequently, the optimal mechanical properties were achieved. The maximum values for relative density, flexural strength, microhardness, fracture toughness and abrasive ratio were 99.1%, 607 MPa, 47.06 GPa, 6.52 MPa·M<sup>1/2</sup> and 7125, respectively.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of particle size of cubic boron nitride powders on the properties of polycrystalline cubic boron nitride composites\",\"authors\":\"Changjiang Xiao,&nbsp;Haoyu Zheng,&nbsp;Hongjun Tao,&nbsp;Jinming Ma,&nbsp;qunfei Zhang,&nbsp;Lihui Tang\",\"doi\":\"10.1007/s12034-024-03326-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polycrystalline cubic boron nitride (PcBN) composites were prepared through high-temperature and high-pressure (HTHP) sintering process. Cubic boron nitride (cBN) powders with particle sizes of 0.2, 1, 3, and 8 μm were selected as raw materials, and Al-Co-TiN was employed as a binder. The effect of particle size of initial cBN powders on the microstructure, relative density, flexural strength, microhardness, fracture toughness and abrasive ratio of sintered PcBN composite were systematically studied. The results showed that synthesized products were mostly made of cBN, TiN, AlN, TiB<sub>2</sub> and CoN phases. The mechanical properties of sintered PcBN composites first increased and then decreased with a reduction in the particle size of cBN powders. When the particle size of initial cBN powder was 1 µm, the binder was observed to be evenly distributed around the cBN grains in the sintered product. Moreover, there was a close bonding between cBN grains and the binder in the sintered product when the particle size of initial cBN powders was 1 µm, consequently, the optimal mechanical properties were achieved. The maximum values for relative density, flexural strength, microhardness, fracture toughness and abrasive ratio were 99.1%, 607 MPa, 47.06 GPa, 6.52 MPa·M<sup>1/2</sup> and 7125, respectively.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03326-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03326-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过高温高压(HTHP)烧结工艺制备了多晶立方氮化硼(PcBN)复合材料。选择粒径为 0.2、1、3 和 8 μm 的立方氮化硼(cBN)粉末作为原材料,并采用 Al-Co-TiN 作为粘结剂。系统研究了初始碳化硼粉末粒度对烧结碳化硼复合材料的微观结构、相对密度、抗弯强度、显微硬度、断裂韧性和磨料比的影响。结果表明,合成产物主要由 cBN、TiN、AlN、TiB2 和 CoN 相组成。随着 cBN 粉末粒径的减小,烧结 PcBN 复合材料的力学性能先升高后降低。当初始碳化硼粉末的粒度为 1 微米时,烧结产物中的粘结剂均匀地分布在碳化硼晶粒周围。此外,当初始 cBN 粉末的粒度为 1 µm 时,烧结产物中的 cBN 颗粒与粘结剂之间的结合非常紧密,因此获得了最佳的机械性能。相对密度、抗弯强度、显微硬度、断裂韧性和磨料比的最大值分别为 99.1%、607 MPa、47.06 GPa、6.52 MPa-M1/2 和 7125。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of particle size of cubic boron nitride powders on the properties of polycrystalline cubic boron nitride composites

Polycrystalline cubic boron nitride (PcBN) composites were prepared through high-temperature and high-pressure (HTHP) sintering process. Cubic boron nitride (cBN) powders with particle sizes of 0.2, 1, 3, and 8 μm were selected as raw materials, and Al-Co-TiN was employed as a binder. The effect of particle size of initial cBN powders on the microstructure, relative density, flexural strength, microhardness, fracture toughness and abrasive ratio of sintered PcBN composite were systematically studied. The results showed that synthesized products were mostly made of cBN, TiN, AlN, TiB2 and CoN phases. The mechanical properties of sintered PcBN composites first increased and then decreased with a reduction in the particle size of cBN powders. When the particle size of initial cBN powder was 1 µm, the binder was observed to be evenly distributed around the cBN grains in the sintered product. Moreover, there was a close bonding between cBN grains and the binder in the sintered product when the particle size of initial cBN powders was 1 µm, consequently, the optimal mechanical properties were achieved. The maximum values for relative density, flexural strength, microhardness, fracture toughness and abrasive ratio were 99.1%, 607 MPa, 47.06 GPa, 6.52 MPa·M1/2 and 7125, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信