球面移动最小二乘法近似的最佳解析空间

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Ralf Hielscher, Tim Pöschl
{"title":"球面移动最小二乘法近似的最佳解析空间","authors":"Ralf Hielscher,&nbsp;Tim Pöschl","doi":"10.1007/s10444-024-10201-z","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the moving least squares (MLS) approximation scheme on the sphere <span>\\(\\mathbb S^{d-1} \\subset {\\mathbb R}^d\\)</span>, where <span>\\(d&gt;1\\)</span>. It is well known that using the spherical harmonics up to degree <span>\\(L \\in {\\mathbb N}\\)</span> as ansatz space yields for functions in <span>\\(\\mathcal {C}^{L+1}(\\mathbb S^{d-1})\\)</span> the approximation order <span>\\(\\mathcal {O}\\left( h^{L+1} \\right) \\)</span>, where <i>h</i> denotes the fill distance of the sampling nodes. In this paper, we show that the dimension of the ansatz space can be almost halved, by including only spherical harmonics of even or odd degrees up to <i>L</i>, while preserving the same order of approximation. Numerical experiments indicate that using the reduced ansatz space is essential to ensure the numerical stability of the MLS approximation scheme as <span>\\(h \\rightarrow 0\\)</span>. Finally, we compare our approach with an MLS approximation scheme that uses polynomials on the tangent space of the sphere as ansatz space.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10201-z.pdf","citationCount":"0","resultStr":"{\"title\":\"An optimal ansatz space for moving least squares approximation on spheres\",\"authors\":\"Ralf Hielscher,&nbsp;Tim Pöschl\",\"doi\":\"10.1007/s10444-024-10201-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We revisit the moving least squares (MLS) approximation scheme on the sphere <span>\\\\(\\\\mathbb S^{d-1} \\\\subset {\\\\mathbb R}^d\\\\)</span>, where <span>\\\\(d&gt;1\\\\)</span>. It is well known that using the spherical harmonics up to degree <span>\\\\(L \\\\in {\\\\mathbb N}\\\\)</span> as ansatz space yields for functions in <span>\\\\(\\\\mathcal {C}^{L+1}(\\\\mathbb S^{d-1})\\\\)</span> the approximation order <span>\\\\(\\\\mathcal {O}\\\\left( h^{L+1} \\\\right) \\\\)</span>, where <i>h</i> denotes the fill distance of the sampling nodes. In this paper, we show that the dimension of the ansatz space can be almost halved, by including only spherical harmonics of even or odd degrees up to <i>L</i>, while preserving the same order of approximation. Numerical experiments indicate that using the reduced ansatz space is essential to ensure the numerical stability of the MLS approximation scheme as <span>\\\\(h \\\\rightarrow 0\\\\)</span>. Finally, we compare our approach with an MLS approximation scheme that uses polynomials on the tangent space of the sphere as ansatz space.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"50 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-024-10201-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10201-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10201-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们重温了球面 \(\mathbb S^{d-1} \子集 {\mathbb R}^d\)上的移动最小二乘(MLS)近似方案,其中 \(d>1\)。众所周知,使用度数为 \(L \in {\mathbb N}\) 的球面谐波作为解析空间,可以得到 \(\mathcal {C}^{L+1}(\mathbb S^{d-1})\) 中函数的近似阶数 \(\mathcal {O}\left( h^{L+1} \right) \),其中 h 表示采样节点的填充距离。在本文中,我们展示了在保持相同近似阶数的情况下,通过只包含偶数或奇数度数不超过 L 的球面谐波,可以将反演空间的维数几乎减半。数值实验表明,使用减小的解析空间对于确保 MLS 近似方案的数值稳定性至关重要。最后,我们将我们的方法与使用球面切线空间上的多项式作为安萨特空间的 MLS 近似方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimal ansatz space for moving least squares approximation on spheres

We revisit the moving least squares (MLS) approximation scheme on the sphere \(\mathbb S^{d-1} \subset {\mathbb R}^d\), where \(d>1\). It is well known that using the spherical harmonics up to degree \(L \in {\mathbb N}\) as ansatz space yields for functions in \(\mathcal {C}^{L+1}(\mathbb S^{d-1})\) the approximation order \(\mathcal {O}\left( h^{L+1} \right) \), where h denotes the fill distance of the sampling nodes. In this paper, we show that the dimension of the ansatz space can be almost halved, by including only spherical harmonics of even or odd degrees up to L, while preserving the same order of approximation. Numerical experiments indicate that using the reduced ansatz space is essential to ensure the numerical stability of the MLS approximation scheme as \(h \rightarrow 0\). Finally, we compare our approach with an MLS approximation scheme that uses polynomials on the tangent space of the sphere as ansatz space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信