Zhihua Zhao, Zijie Su, Zhenli Lv, Pu Shi, Guixin Jin, Lan Wu
{"title":"基于二维 Ti3C2Tx MXenes 和 Bi2S3 异质结的用于检测 NH3 的室温气体传感器","authors":"Zhihua Zhao, Zijie Su, Zhenli Lv, Pu Shi, Guixin Jin, Lan Wu","doi":"10.1007/s00604-024-06750-1","DOIUrl":null,"url":null,"abstract":"<div><p> Bi<sub>2</sub>S<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanomaterials were successfully prepared through a simple hydrothermal method. Various methods were used for their characterization, including XRD, XPS, SEM, EDS, and BET, along with testing their gas-sensing properties. The results showed that the response value to 100 ppm ammonia at room temperature reached 107%, which was 14.1 times higher than that of pure few-layer MXene. After undergoing anti-humidity interference testing, we observed that Bi<sub>2</sub>S<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> exhibited a higher response value in real-time monitoring of ammonia as humidity increased. Specifically, under 90% humidity conditions, its response value reached 1.32 times that of normal humidity conditions. This exceptional moisture resistance ensures that the sensor can maintain stability, and even exhibit superior performance, in harsh environments. Therefore, it possesses excellent selectivity, high-moisture-resistance, and long-term stability, making it significant in the field of medical and health monitoring.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room temperature gas sensors for NH3 detection based on the heterojunction of 2D Ti3C2Tx MXenes and Bi2S3\",\"authors\":\"Zhihua Zhao, Zijie Su, Zhenli Lv, Pu Shi, Guixin Jin, Lan Wu\",\"doi\":\"10.1007/s00604-024-06750-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p> Bi<sub>2</sub>S<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanomaterials were successfully prepared through a simple hydrothermal method. Various methods were used for their characterization, including XRD, XPS, SEM, EDS, and BET, along with testing their gas-sensing properties. The results showed that the response value to 100 ppm ammonia at room temperature reached 107%, which was 14.1 times higher than that of pure few-layer MXene. After undergoing anti-humidity interference testing, we observed that Bi<sub>2</sub>S<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> exhibited a higher response value in real-time monitoring of ammonia as humidity increased. Specifically, under 90% humidity conditions, its response value reached 1.32 times that of normal humidity conditions. This exceptional moisture resistance ensures that the sensor can maintain stability, and even exhibit superior performance, in harsh environments. Therefore, it possesses excellent selectivity, high-moisture-resistance, and long-term stability, making it significant in the field of medical and health monitoring.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 11\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06750-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06750-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Room temperature gas sensors for NH3 detection based on the heterojunction of 2D Ti3C2Tx MXenes and Bi2S3
Bi2S3/Ti3C2Tx nanomaterials were successfully prepared through a simple hydrothermal method. Various methods were used for their characterization, including XRD, XPS, SEM, EDS, and BET, along with testing their gas-sensing properties. The results showed that the response value to 100 ppm ammonia at room temperature reached 107%, which was 14.1 times higher than that of pure few-layer MXene. After undergoing anti-humidity interference testing, we observed that Bi2S3/Ti3C2Tx exhibited a higher response value in real-time monitoring of ammonia as humidity increased. Specifically, under 90% humidity conditions, its response value reached 1.32 times that of normal humidity conditions. This exceptional moisture resistance ensures that the sensor can maintain stability, and even exhibit superior performance, in harsh environments. Therefore, it possesses excellent selectivity, high-moisture-resistance, and long-term stability, making it significant in the field of medical and health monitoring.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.