{"title":"基于沸石咪唑酸框架的分子印迹传感器,用于测定还原氧化石墨烯上负载的钴和掺杂氮的碳中的多巴胺含量","authors":"Shufang Ren, Xiaohang Liu, Yahui Liu, Junpeng Zhao, Yuan Zhang, Zhixiang Zheng","doi":"10.1007/s00604-024-06759-6","DOIUrl":null,"url":null,"abstract":"<div><p>A novel voltammetric sensor designed for dopamine (DA) detection is presented utilizing a combination of zeolitic imidazolate framework (ZIF-67) derived cobalt and nitrogen-doped carbon on reduced graphene oxide (Co–N-C/rGO). ZIF-67 cubic crystals were synthesized in situ and deposited onto the graphene oxide (GO) surface through room-temperature reactions. High-temperature calcination resulted in partially collapsed cubic and spherical carbon, while simultaneously reducing GO to rGO. A molecular imprinting resorcinol polymer (MIP) membrane was also in situ applied to the Co–N-C/rGO/glassy carbon electrode (GCE) via electropolymerization. Analyses using cyclic voltammetry, electrochemical impedance, and pulse voltammetry reveal that the modified MIP/Co–N-C/rGO/GCE electrodes show improved electroconductivity and notable electrochemical reactivity towards dopamine. After optimizing detection parameters, the sensor demonstrates a wide linear detection range of 0.01—0.5 and 0.5—100 μmol/L, with a limit of detection (LOD) of 3.33 nmol/L (S/N = 3). Additionally, the sensor displays strong robustness, including excellent selectivity, significant resistance to interference, and long-term stability. It also shows satisfactory recovery in detecting spiked real samples.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular imprinting sensor based on zeolitic imidazolate framework derived Co, N-doped carbon loaded on reduced graphene oxide toward the determination of dopamine\",\"authors\":\"Shufang Ren, Xiaohang Liu, Yahui Liu, Junpeng Zhao, Yuan Zhang, Zhixiang Zheng\",\"doi\":\"10.1007/s00604-024-06759-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel voltammetric sensor designed for dopamine (DA) detection is presented utilizing a combination of zeolitic imidazolate framework (ZIF-67) derived cobalt and nitrogen-doped carbon on reduced graphene oxide (Co–N-C/rGO). ZIF-67 cubic crystals were synthesized in situ and deposited onto the graphene oxide (GO) surface through room-temperature reactions. High-temperature calcination resulted in partially collapsed cubic and spherical carbon, while simultaneously reducing GO to rGO. A molecular imprinting resorcinol polymer (MIP) membrane was also in situ applied to the Co–N-C/rGO/glassy carbon electrode (GCE) via electropolymerization. Analyses using cyclic voltammetry, electrochemical impedance, and pulse voltammetry reveal that the modified MIP/Co–N-C/rGO/GCE electrodes show improved electroconductivity and notable electrochemical reactivity towards dopamine. After optimizing detection parameters, the sensor demonstrates a wide linear detection range of 0.01—0.5 and 0.5—100 μmol/L, with a limit of detection (LOD) of 3.33 nmol/L (S/N = 3). Additionally, the sensor displays strong robustness, including excellent selectivity, significant resistance to interference, and long-term stability. It also shows satisfactory recovery in detecting spiked real samples.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 11\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06759-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06759-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Molecular imprinting sensor based on zeolitic imidazolate framework derived Co, N-doped carbon loaded on reduced graphene oxide toward the determination of dopamine
A novel voltammetric sensor designed for dopamine (DA) detection is presented utilizing a combination of zeolitic imidazolate framework (ZIF-67) derived cobalt and nitrogen-doped carbon on reduced graphene oxide (Co–N-C/rGO). ZIF-67 cubic crystals were synthesized in situ and deposited onto the graphene oxide (GO) surface through room-temperature reactions. High-temperature calcination resulted in partially collapsed cubic and spherical carbon, while simultaneously reducing GO to rGO. A molecular imprinting resorcinol polymer (MIP) membrane was also in situ applied to the Co–N-C/rGO/glassy carbon electrode (GCE) via electropolymerization. Analyses using cyclic voltammetry, electrochemical impedance, and pulse voltammetry reveal that the modified MIP/Co–N-C/rGO/GCE electrodes show improved electroconductivity and notable electrochemical reactivity towards dopamine. After optimizing detection parameters, the sensor demonstrates a wide linear detection range of 0.01—0.5 and 0.5—100 μmol/L, with a limit of detection (LOD) of 3.33 nmol/L (S/N = 3). Additionally, the sensor displays strong robustness, including excellent selectivity, significant resistance to interference, and long-term stability. It also shows satisfactory recovery in detecting spiked real samples.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.