{"title":"玻璃珠尺寸对流动溶解系统溶解曲线的影响 (USP 4)","authors":"Hiroyuki Yoshida, Keita Teruya, Yasuhiro Abe, Takayuki Furuishi, Kaori Fukuzawa, Etsuo Yonemochi, Ken-ichi Izutsu","doi":"10.1208/s12249-024-02972-x","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of glass bead size in the conical space of flow-through cells on the dissolution profiles were investigated in a USP apparatus 4. Dissolution tests of disintegrating and non-disintegrating tablets in flow-through dissolution systems were performed using semi-high precision glass beads with diameters ranging from 0.5 mm to 1.5 mm. Computational fluid dynamics (CFD) was used to evaluate the effect of shear stress from the dissolution media flow. The use of smaller glass beads in a larger cell resulted in a faster dissolution of the model formulations under certain test conditions. The effect on the dissolution was highly dependent on the size of the beads in the top layer, including those in contact with the tablets. The absence of a bead-size effect on the dissolution of an orodispersible tablet in a small cell can be explained by the floating fragments during the test. CFD analysis showed that smaller bead diameters led to greater shear stress on the tablet, which was correlated with the dissolution rate. Hence, fluid flow through the narrow gaps between the small beads generated strong local flows, causing shear stress. The size of the glass beads used in flow-through cells affects the dissolution rate of tablets by altering the shear stress on the tablets in certain cases (e.g., direct deposition of the formulation on glass beads, large cells, and very low flow rates). Thus, glass bead size must be considered for a robust dissolution test in a flow-through cell system.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Glass Bead Size on Dissolution Profiles in Flow-through Dissolution Systems (USP 4)\",\"authors\":\"Hiroyuki Yoshida, Keita Teruya, Yasuhiro Abe, Takayuki Furuishi, Kaori Fukuzawa, Etsuo Yonemochi, Ken-ichi Izutsu\",\"doi\":\"10.1208/s12249-024-02972-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of glass bead size in the conical space of flow-through cells on the dissolution profiles were investigated in a USP apparatus 4. Dissolution tests of disintegrating and non-disintegrating tablets in flow-through dissolution systems were performed using semi-high precision glass beads with diameters ranging from 0.5 mm to 1.5 mm. Computational fluid dynamics (CFD) was used to evaluate the effect of shear stress from the dissolution media flow. The use of smaller glass beads in a larger cell resulted in a faster dissolution of the model formulations under certain test conditions. The effect on the dissolution was highly dependent on the size of the beads in the top layer, including those in contact with the tablets. The absence of a bead-size effect on the dissolution of an orodispersible tablet in a small cell can be explained by the floating fragments during the test. CFD analysis showed that smaller bead diameters led to greater shear stress on the tablet, which was correlated with the dissolution rate. Hence, fluid flow through the narrow gaps between the small beads generated strong local flows, causing shear stress. The size of the glass beads used in flow-through cells affects the dissolution rate of tablets by altering the shear stress on the tablets in certain cases (e.g., direct deposition of the formulation on glass beads, large cells, and very low flow rates). Thus, glass bead size must be considered for a robust dissolution test in a flow-through cell system.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"25 8\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-024-02972-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02972-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Effects of Glass Bead Size on Dissolution Profiles in Flow-through Dissolution Systems (USP 4)
The effects of glass bead size in the conical space of flow-through cells on the dissolution profiles were investigated in a USP apparatus 4. Dissolution tests of disintegrating and non-disintegrating tablets in flow-through dissolution systems were performed using semi-high precision glass beads with diameters ranging from 0.5 mm to 1.5 mm. Computational fluid dynamics (CFD) was used to evaluate the effect of shear stress from the dissolution media flow. The use of smaller glass beads in a larger cell resulted in a faster dissolution of the model formulations under certain test conditions. The effect on the dissolution was highly dependent on the size of the beads in the top layer, including those in contact with the tablets. The absence of a bead-size effect on the dissolution of an orodispersible tablet in a small cell can be explained by the floating fragments during the test. CFD analysis showed that smaller bead diameters led to greater shear stress on the tablet, which was correlated with the dissolution rate. Hence, fluid flow through the narrow gaps between the small beads generated strong local flows, causing shear stress. The size of the glass beads used in flow-through cells affects the dissolution rate of tablets by altering the shear stress on the tablets in certain cases (e.g., direct deposition of the formulation on glass beads, large cells, and very low flow rates). Thus, glass bead size must be considered for a robust dissolution test in a flow-through cell system.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.