离散元素法(DEM)聚合物废物颗粒模拟参数的确定

IF 2.4 3区 工程技术
Alessio Martignoni, Lorenzo Iorio, Matteo Strano
{"title":"离散元素法(DEM)聚合物废物颗粒模拟参数的确定","authors":"Alessio Martignoni,&nbsp;Lorenzo Iorio,&nbsp;Matteo Strano","doi":"10.1007/s10035-024-01474-8","DOIUrl":null,"url":null,"abstract":"<div><p>Plastic consumption is on the rise, particularly in Europe, where million tonnes are produced each year, with only 10% recovered. Optimizing the recycling processes in all its phases is vital. Understanding particle movement in some components of the plastic recycling plants can be addressed by the Discrete Element Method (DEM). The characterization of DEM materials is often performed through the study of the angle of repose (AoR). This study aims to advance DEM simulation of shredded polymeric waste, proposing a scaling and calibration procedure of the relevant simulation parameters. A total of six distinct types of polymeric particles, with different shape and size, have been characterized in this study, measuring their density, their shape estimators, their size distribution and their angle of repose. The AoR has been measured through a hollow cylinder lifting test. First, sensitivity analyses have been performed to establish a suitable range for the numerical parameters and to reduce the dimensionality of the problem. Then, the scaling and calibration procedure is described and tested on the six batches. The proposed procedure allows to predict very well the AoR, with an error below 1%, and the other geometrical variables of a heap, although it deteriorates in fully predicting its shape when the sphericity of the particles decreases.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of discrete element method (DEM) simulation parameters for polymeric waste particles\",\"authors\":\"Alessio Martignoni,&nbsp;Lorenzo Iorio,&nbsp;Matteo Strano\",\"doi\":\"10.1007/s10035-024-01474-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plastic consumption is on the rise, particularly in Europe, where million tonnes are produced each year, with only 10% recovered. Optimizing the recycling processes in all its phases is vital. Understanding particle movement in some components of the plastic recycling plants can be addressed by the Discrete Element Method (DEM). The characterization of DEM materials is often performed through the study of the angle of repose (AoR). This study aims to advance DEM simulation of shredded polymeric waste, proposing a scaling and calibration procedure of the relevant simulation parameters. A total of six distinct types of polymeric particles, with different shape and size, have been characterized in this study, measuring their density, their shape estimators, their size distribution and their angle of repose. The AoR has been measured through a hollow cylinder lifting test. First, sensitivity analyses have been performed to establish a suitable range for the numerical parameters and to reduce the dimensionality of the problem. Then, the scaling and calibration procedure is described and tested on the six batches. The proposed procedure allows to predict very well the AoR, with an error below 1%, and the other geometrical variables of a heap, although it deteriorates in fully predicting its shape when the sphericity of the particles decreases.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01474-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01474-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

塑料消耗量在不断增加,尤其是在欧洲,每年生产的塑料达数百万吨,但回收率仅为 10%。优化各个阶段的回收流程至关重要。通过离散元素法(DEM)可以了解塑料回收设备某些部件中颗粒的运动情况。DEM 材料的表征通常通过研究休止角 (AoR) 来实现。本研究旨在推进切碎聚合废物的 DEM 模拟,提出了相关模拟参数的缩放和校准程序。本研究共对六种不同形状和大小的聚合物颗粒进行了特征描述,测量了它们的密度、形状估计值、大小分布和静止角。AoR是通过空心圆柱体提升试验测量的。首先,进行了敏感性分析,以确定数值参数的合适范围,并降低问题的维度。然后,描述了缩放和校准程序,并在六个批次上进行了测试。所提出的程序可以很好地预测 AoR(误差低于 1%)以及堆的其他几何变量,但当颗粒的球形度降低时,该程序在完全预测堆的形状方面有所退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determination of discrete element method (DEM) simulation parameters for polymeric waste particles

Determination of discrete element method (DEM) simulation parameters for polymeric waste particles

Plastic consumption is on the rise, particularly in Europe, where million tonnes are produced each year, with only 10% recovered. Optimizing the recycling processes in all its phases is vital. Understanding particle movement in some components of the plastic recycling plants can be addressed by the Discrete Element Method (DEM). The characterization of DEM materials is often performed through the study of the angle of repose (AoR). This study aims to advance DEM simulation of shredded polymeric waste, proposing a scaling and calibration procedure of the relevant simulation parameters. A total of six distinct types of polymeric particles, with different shape and size, have been characterized in this study, measuring their density, their shape estimators, their size distribution and their angle of repose. The AoR has been measured through a hollow cylinder lifting test. First, sensitivity analyses have been performed to establish a suitable range for the numerical parameters and to reduce the dimensionality of the problem. Then, the scaling and calibration procedure is described and tested on the six batches. The proposed procedure allows to predict very well the AoR, with an error below 1%, and the other geometrical variables of a heap, although it deteriorates in fully predicting its shape when the sphericity of the particles decreases.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信