Jicheng Li
(, ), Hongling Ye
(, ), Yongjia Dong
(, ), Zhanli Liu
(, ), Tianfeng Sun
(, ), Haisheng Wu
(, )
{"title":"基于深度学习的高效连续纤维复合材料结构拓扑优化方法","authors":"Jicheng Li \n (, ), Hongling Ye \n (, ), Yongjia Dong \n (, ), Zhanli Liu \n (, ), Tianfeng Sun \n (, ), Haisheng Wu \n (, )","doi":"10.1007/s10409-024-24207-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure (CFRCS). The proposed method mainly includes three steps: (1) a ResUNet-involved generative and adversarial network (ResUNet-GAN) is developed to establish the end-to-end mapping from structural design parameters to fiber-reinforced composite optimized structure, and a fiber orientation chromatogram is presented to represent continuous fiber angles; (2) to avoid the local optimum problem, the independent continuous mapping method (ICM method) considering the improved principal stress orientation interpolated continuous fiber angle optimization (PSO-CFAO) strategy is utilized to construct CFRCS topology optimization dataset; (3) the well-trained ResUNet-GAN is deployed to design the optimal structural material distribution together with the corresponding continuous fiber orientations. Numerical simulations for benchmark structure verify that the proposed method greatly improves the design efficiency of CFRCS along with high design accuracy. Furthermore, the CFRCS topology configuration designed by ResUNet-GAN is fabricated by additive manufacturing. Compression experiments of the specimens show that both the stiffness structure and peak load of the CFRCS topology configuration designed by the proposed method have significantly enhanced. The proposed deep learning-based topology optimization method will provide great flexibility in CFRCS for engineering applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient deep learning-based topology optimization method for continuous fiber composite structure\",\"authors\":\"Jicheng Li \\n (, ), Hongling Ye \\n (, ), Yongjia Dong \\n (, ), Zhanli Liu \\n (, ), Tianfeng Sun \\n (, ), Haisheng Wu \\n (, )\",\"doi\":\"10.1007/s10409-024-24207-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure (CFRCS). The proposed method mainly includes three steps: (1) a ResUNet-involved generative and adversarial network (ResUNet-GAN) is developed to establish the end-to-end mapping from structural design parameters to fiber-reinforced composite optimized structure, and a fiber orientation chromatogram is presented to represent continuous fiber angles; (2) to avoid the local optimum problem, the independent continuous mapping method (ICM method) considering the improved principal stress orientation interpolated continuous fiber angle optimization (PSO-CFAO) strategy is utilized to construct CFRCS topology optimization dataset; (3) the well-trained ResUNet-GAN is deployed to design the optimal structural material distribution together with the corresponding continuous fiber orientations. Numerical simulations for benchmark structure verify that the proposed method greatly improves the design efficiency of CFRCS along with high design accuracy. Furthermore, the CFRCS topology configuration designed by ResUNet-GAN is fabricated by additive manufacturing. Compression experiments of the specimens show that both the stiffness structure and peak load of the CFRCS topology configuration designed by the proposed method have significantly enhanced. The proposed deep learning-based topology optimization method will provide great flexibility in CFRCS for engineering applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24207-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24207-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An efficient deep learning-based topology optimization method for continuous fiber composite structure
This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure (CFRCS). The proposed method mainly includes three steps: (1) a ResUNet-involved generative and adversarial network (ResUNet-GAN) is developed to establish the end-to-end mapping from structural design parameters to fiber-reinforced composite optimized structure, and a fiber orientation chromatogram is presented to represent continuous fiber angles; (2) to avoid the local optimum problem, the independent continuous mapping method (ICM method) considering the improved principal stress orientation interpolated continuous fiber angle optimization (PSO-CFAO) strategy is utilized to construct CFRCS topology optimization dataset; (3) the well-trained ResUNet-GAN is deployed to design the optimal structural material distribution together with the corresponding continuous fiber orientations. Numerical simulations for benchmark structure verify that the proposed method greatly improves the design efficiency of CFRCS along with high design accuracy. Furthermore, the CFRCS topology configuration designed by ResUNet-GAN is fabricated by additive manufacturing. Compression experiments of the specimens show that both the stiffness structure and peak load of the CFRCS topology configuration designed by the proposed method have significantly enhanced. The proposed deep learning-based topology optimization method will provide great flexibility in CFRCS for engineering applications.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics