{"title":"用于全球日冕诊断的多狭缝极紫外摄谱仪的光学优化","authors":"Yufei Feng, Xianyong Bai, Sifan Guo, Hui Tian, Lami Chan, Yuanyong Deng, Qi Yang, Wei Duan, Xiaoming Zhu, Xiao Yang, Zhiwei Feng, Zhiyong Zhang","doi":"10.1007/s10686-024-09961-9","DOIUrl":null,"url":null,"abstract":"<div><p>The spatial-temporal evolution of coronal plasma parameters of the solar outer atmosphere at global scales, derived from solar full-disk imaging spectroscopic observation in the extreme-ultraviolet band, is critical for understanding and forecasting solar eruptions. We propose a multi-slits extreme ultraviolet imaging spectrograph for global coronal diagnostics with high cadence and present the preliminary instrument designs for the wavelength range from 18.3 to 19.8 nm. The instrument takes a comprehensive approach to obtain global coronal spatial and spectral information, improve the detected cadence and avoid overlapping. We first describe the relationship between optical properties and structural parameters, especially the relationship between the overlapping and the number of slits, and give a general multi-slits extreme-ultraviolet imaging spectrograph design process. The multilayer structure is optimized to enhance the effective areas in the observation band. Five distantly-separated slits are set to divide the entire solar field of view, which increase the cadence for raster scanning the solar disk by 5 times relative to a single slit. The spectral resolving power of the optical system with an aperture diameter of 150 mm are optimized to be greater than 1461. The spatial resolution along the slits direction and the scanning direction are about <span>\\(4.4^{\\prime \\prime }\\)</span> and <span>\\(6.86^{\\prime \\prime }\\)</span>, respectively. The Al/Mo/B<span>\\(_4\\)</span>C multilayer structure is optimized and the peak effective area is about 1.60 cm<span>\\(^2\\)</span> at 19.3 nm with a full width at half maximum of about 1.3 nm. The cadence to finish full-disk raster scan is about 5 minutes. Finally, the instrument performance is evaluated by an end-to-end calculation of the system photon budget and a simulation of the observational image and spectra. Our investigation shows that this approach is promising for global coronal plasma diagnostics.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical optimization of a multi-slit extreme ultraviolet spectrograph for global solar corona diagnostics\",\"authors\":\"Yufei Feng, Xianyong Bai, Sifan Guo, Hui Tian, Lami Chan, Yuanyong Deng, Qi Yang, Wei Duan, Xiaoming Zhu, Xiao Yang, Zhiwei Feng, Zhiyong Zhang\",\"doi\":\"10.1007/s10686-024-09961-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spatial-temporal evolution of coronal plasma parameters of the solar outer atmosphere at global scales, derived from solar full-disk imaging spectroscopic observation in the extreme-ultraviolet band, is critical for understanding and forecasting solar eruptions. We propose a multi-slits extreme ultraviolet imaging spectrograph for global coronal diagnostics with high cadence and present the preliminary instrument designs for the wavelength range from 18.3 to 19.8 nm. The instrument takes a comprehensive approach to obtain global coronal spatial and spectral information, improve the detected cadence and avoid overlapping. We first describe the relationship between optical properties and structural parameters, especially the relationship between the overlapping and the number of slits, and give a general multi-slits extreme-ultraviolet imaging spectrograph design process. The multilayer structure is optimized to enhance the effective areas in the observation band. Five distantly-separated slits are set to divide the entire solar field of view, which increase the cadence for raster scanning the solar disk by 5 times relative to a single slit. The spectral resolving power of the optical system with an aperture diameter of 150 mm are optimized to be greater than 1461. The spatial resolution along the slits direction and the scanning direction are about <span>\\\\(4.4^{\\\\prime \\\\prime }\\\\)</span> and <span>\\\\(6.86^{\\\\prime \\\\prime }\\\\)</span>, respectively. The Al/Mo/B<span>\\\\(_4\\\\)</span>C multilayer structure is optimized and the peak effective area is about 1.60 cm<span>\\\\(^2\\\\)</span> at 19.3 nm with a full width at half maximum of about 1.3 nm. The cadence to finish full-disk raster scan is about 5 minutes. Finally, the instrument performance is evaluated by an end-to-end calculation of the system photon budget and a simulation of the observational image and spectra. Our investigation shows that this approach is promising for global coronal plasma diagnostics.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"58 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-024-09961-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09961-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Optical optimization of a multi-slit extreme ultraviolet spectrograph for global solar corona diagnostics
The spatial-temporal evolution of coronal plasma parameters of the solar outer atmosphere at global scales, derived from solar full-disk imaging spectroscopic observation in the extreme-ultraviolet band, is critical for understanding and forecasting solar eruptions. We propose a multi-slits extreme ultraviolet imaging spectrograph for global coronal diagnostics with high cadence and present the preliminary instrument designs for the wavelength range from 18.3 to 19.8 nm. The instrument takes a comprehensive approach to obtain global coronal spatial and spectral information, improve the detected cadence and avoid overlapping. We first describe the relationship between optical properties and structural parameters, especially the relationship between the overlapping and the number of slits, and give a general multi-slits extreme-ultraviolet imaging spectrograph design process. The multilayer structure is optimized to enhance the effective areas in the observation band. Five distantly-separated slits are set to divide the entire solar field of view, which increase the cadence for raster scanning the solar disk by 5 times relative to a single slit. The spectral resolving power of the optical system with an aperture diameter of 150 mm are optimized to be greater than 1461. The spatial resolution along the slits direction and the scanning direction are about \(4.4^{\prime \prime }\) and \(6.86^{\prime \prime }\), respectively. The Al/Mo/B\(_4\)C multilayer structure is optimized and the peak effective area is about 1.60 cm\(^2\) at 19.3 nm with a full width at half maximum of about 1.3 nm. The cadence to finish full-disk raster scan is about 5 minutes. Finally, the instrument performance is evaluated by an end-to-end calculation of the system photon budget and a simulation of the observational image and spectra. Our investigation shows that this approach is promising for global coronal plasma diagnostics.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.