{"title":"探索利用高岭土和废弃氧化镁-C 耐火砖的新配方陶瓷的微观结构和物理特性","authors":"Sabrina Ladjama, Alima Mebrek, Azzedine Grid, Sihem Benayache","doi":"10.1007/s11837-024-06882-y","DOIUrl":null,"url":null,"abstract":"<div><p>The investigation focused on the densification and phase transition of cordierite ceramic made from the Algerian raw material kaolin DD1 and spent refractory bricks (MgO-C) with a ratio weight of 85:15. The samples were sintered for 2 h at 1200–1400°C. All samples were studied in terms of phase evolution on heating and microstructure by XRD, Fourier-transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), density, hardness and SEM observations. The findings indicated that with the elevation of temperature, the crystallinity of α-cordierite exhibited a rising trend, reaching its peak at 1400°C with a value of 54.48%. Conversely, the mullite content suffered a decline as the sintering temperature increased. The utilization of waste brick sources containing magnesia (MgO) at different firing temperatures resulted in an enhanced formation of cordierite and spinel at the expense of mullite, which exhibited a decreasing trend.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 11","pages":"6325 - 6337"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11837-024-06882-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploration of Microstructural and Physical Characteristics in a Newly Formulated Ceramic Utilizing Kaolin and Waste MgO-C Refractory Bricks\",\"authors\":\"Sabrina Ladjama, Alima Mebrek, Azzedine Grid, Sihem Benayache\",\"doi\":\"10.1007/s11837-024-06882-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The investigation focused on the densification and phase transition of cordierite ceramic made from the Algerian raw material kaolin DD1 and spent refractory bricks (MgO-C) with a ratio weight of 85:15. The samples were sintered for 2 h at 1200–1400°C. All samples were studied in terms of phase evolution on heating and microstructure by XRD, Fourier-transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), density, hardness and SEM observations. The findings indicated that with the elevation of temperature, the crystallinity of α-cordierite exhibited a rising trend, reaching its peak at 1400°C with a value of 54.48%. Conversely, the mullite content suffered a decline as the sintering temperature increased. The utilization of waste brick sources containing magnesia (MgO) at different firing temperatures resulted in an enhanced formation of cordierite and spinel at the expense of mullite, which exhibited a decreasing trend.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"76 11\",\"pages\":\"6325 - 6337\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11837-024-06882-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06882-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06882-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploration of Microstructural and Physical Characteristics in a Newly Formulated Ceramic Utilizing Kaolin and Waste MgO-C Refractory Bricks
The investigation focused on the densification and phase transition of cordierite ceramic made from the Algerian raw material kaolin DD1 and spent refractory bricks (MgO-C) with a ratio weight of 85:15. The samples were sintered for 2 h at 1200–1400°C. All samples were studied in terms of phase evolution on heating and microstructure by XRD, Fourier-transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), density, hardness and SEM observations. The findings indicated that with the elevation of temperature, the crystallinity of α-cordierite exhibited a rising trend, reaching its peak at 1400°C with a value of 54.48%. Conversely, the mullite content suffered a decline as the sintering temperature increased. The utilization of waste brick sources containing magnesia (MgO) at different firing temperatures resulted in an enhanced formation of cordierite and spinel at the expense of mullite, which exhibited a decreasing trend.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.