{"title":"结合温度对钴铁镍中间层扩散结合的 W/Steel 接头的界面微观结构和机械性能的影响","authors":"Chunyan Wang, Guoyun Tao, Shuibao Liang, Kuijing Song, Chengyong Wang, Yucheng Wu, Zhihong Zhong","doi":"10.1007/s11837-024-06877-9","DOIUrl":null,"url":null,"abstract":"<div><p>Realizing the reliable bonding of tungsten (W) and reduced activation ferritic/martensitic (RAFM) steel is of significance for the fabrication of plasma-facing components in fusion reactors. Considering the significant differences in physical and chemical properties between the substrates of W and RAFM steel, the development of novel joining materials has attracted much attention in recent years. In the present work, a medium entropy alloy CoFeNi interlayer was selected to diffusion bond W and RAFM steel by utilizing an electric field-assisted joining technique. The effect of bonding temperature on the interface microstructure and mechanical properties of the joint was studied at room temperature. For the joints diffusion-bonded in the temperature range between 800°C and 1100°C for 15 min under 20 MPa, good metallurgical bonding without cracks and discontinuities were achieved at both the steel/CoFeNi and CoFeNi/W interfaces. Face-centered cubic (FCC) solid solutions were formed at the steel/CoFeNi interface, while both FCC and μ phases were identified at the CoFeNi/W interface. The W/CoFeNi/steel joint diffusion bonded at 900°C has the highest tensile strength of 313 MPa. Moreover, the comparison of the joint tensile strength between this work and previous researches has been discussed.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 11","pages":"6313 - 6324"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11837-024-06877-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of Bonding Temperature on the Interfacial Microstructure and Mechanical Properties of W/Steel Joints Diffusion-Bonded with a CoFeNi Interlayer\",\"authors\":\"Chunyan Wang, Guoyun Tao, Shuibao Liang, Kuijing Song, Chengyong Wang, Yucheng Wu, Zhihong Zhong\",\"doi\":\"10.1007/s11837-024-06877-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Realizing the reliable bonding of tungsten (W) and reduced activation ferritic/martensitic (RAFM) steel is of significance for the fabrication of plasma-facing components in fusion reactors. Considering the significant differences in physical and chemical properties between the substrates of W and RAFM steel, the development of novel joining materials has attracted much attention in recent years. In the present work, a medium entropy alloy CoFeNi interlayer was selected to diffusion bond W and RAFM steel by utilizing an electric field-assisted joining technique. The effect of bonding temperature on the interface microstructure and mechanical properties of the joint was studied at room temperature. For the joints diffusion-bonded in the temperature range between 800°C and 1100°C for 15 min under 20 MPa, good metallurgical bonding without cracks and discontinuities were achieved at both the steel/CoFeNi and CoFeNi/W interfaces. Face-centered cubic (FCC) solid solutions were formed at the steel/CoFeNi interface, while both FCC and μ phases were identified at the CoFeNi/W interface. The W/CoFeNi/steel joint diffusion bonded at 900°C has the highest tensile strength of 313 MPa. Moreover, the comparison of the joint tensile strength between this work and previous researches has been discussed.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"76 11\",\"pages\":\"6313 - 6324\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11837-024-06877-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06877-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06877-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Bonding Temperature on the Interfacial Microstructure and Mechanical Properties of W/Steel Joints Diffusion-Bonded with a CoFeNi Interlayer
Realizing the reliable bonding of tungsten (W) and reduced activation ferritic/martensitic (RAFM) steel is of significance for the fabrication of plasma-facing components in fusion reactors. Considering the significant differences in physical and chemical properties between the substrates of W and RAFM steel, the development of novel joining materials has attracted much attention in recent years. In the present work, a medium entropy alloy CoFeNi interlayer was selected to diffusion bond W and RAFM steel by utilizing an electric field-assisted joining technique. The effect of bonding temperature on the interface microstructure and mechanical properties of the joint was studied at room temperature. For the joints diffusion-bonded in the temperature range between 800°C and 1100°C for 15 min under 20 MPa, good metallurgical bonding without cracks and discontinuities were achieved at both the steel/CoFeNi and CoFeNi/W interfaces. Face-centered cubic (FCC) solid solutions were formed at the steel/CoFeNi interface, while both FCC and μ phases were identified at the CoFeNi/W interface. The W/CoFeNi/steel joint diffusion bonded at 900°C has the highest tensile strength of 313 MPa. Moreover, the comparison of the joint tensile strength between this work and previous researches has been discussed.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.