{"title":"观测到陆地总初级生产力的光利用效率不断提高","authors":"","doi":"10.1016/j.agrformet.2024.110269","DOIUrl":null,"url":null,"abstract":"<div><div>Widespread global greening driven by CO<sub>2</sub> fertilization implies a denser canopy structure, and more leaves could be used to collect light from the atmosphere for plant photosynthesis. Whether this increase in leaf quantity could enhance the capacity of vegetation to convert absorbed light to photosynthate remains unclear. In this study, we investigate the spatial-temporal variations of canopy light-use efficiency (LUE), an indicator of leaf photosynthesis capacity, with FLUXNET recordings of 540 site-years and seven satellite-derived proxies. We find that flux tower measurements identify an increasing trend of LUE, and the temporal variations of cross-site LUE are mainly caused by nitrogen fertilization (18.09 %), temperature (17.06 %), and CO<sub>2</sub> fertilization (16.59 %). Globally, satellite-derived datasets also show widespread increasing LUE over the past two decades, most attributed to the nitrogen deposition and CO<sub>2</sub> fertilization effects, especially in evergreen broadleaf forests. Future projections of terrestrial LUE by CMIP6 Earth system models further suggest an overall increasing trend of LUE to the end of the 21st century. Our findings highlight the importance of vegetation physiology such as LUE in understanding of enhancement on terrestrial plant photosynthesis and carbon sink under climate change.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observed increasing light-use efficiency of terrestrial gross primary productivity\",\"authors\":\"\",\"doi\":\"10.1016/j.agrformet.2024.110269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Widespread global greening driven by CO<sub>2</sub> fertilization implies a denser canopy structure, and more leaves could be used to collect light from the atmosphere for plant photosynthesis. Whether this increase in leaf quantity could enhance the capacity of vegetation to convert absorbed light to photosynthate remains unclear. In this study, we investigate the spatial-temporal variations of canopy light-use efficiency (LUE), an indicator of leaf photosynthesis capacity, with FLUXNET recordings of 540 site-years and seven satellite-derived proxies. We find that flux tower measurements identify an increasing trend of LUE, and the temporal variations of cross-site LUE are mainly caused by nitrogen fertilization (18.09 %), temperature (17.06 %), and CO<sub>2</sub> fertilization (16.59 %). Globally, satellite-derived datasets also show widespread increasing LUE over the past two decades, most attributed to the nitrogen deposition and CO<sub>2</sub> fertilization effects, especially in evergreen broadleaf forests. Future projections of terrestrial LUE by CMIP6 Earth system models further suggest an overall increasing trend of LUE to the end of the 21st century. Our findings highlight the importance of vegetation physiology such as LUE in understanding of enhancement on terrestrial plant photosynthesis and carbon sink under climate change.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192324003824\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003824","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Observed increasing light-use efficiency of terrestrial gross primary productivity
Widespread global greening driven by CO2 fertilization implies a denser canopy structure, and more leaves could be used to collect light from the atmosphere for plant photosynthesis. Whether this increase in leaf quantity could enhance the capacity of vegetation to convert absorbed light to photosynthate remains unclear. In this study, we investigate the spatial-temporal variations of canopy light-use efficiency (LUE), an indicator of leaf photosynthesis capacity, with FLUXNET recordings of 540 site-years and seven satellite-derived proxies. We find that flux tower measurements identify an increasing trend of LUE, and the temporal variations of cross-site LUE are mainly caused by nitrogen fertilization (18.09 %), temperature (17.06 %), and CO2 fertilization (16.59 %). Globally, satellite-derived datasets also show widespread increasing LUE over the past two decades, most attributed to the nitrogen deposition and CO2 fertilization effects, especially in evergreen broadleaf forests. Future projections of terrestrial LUE by CMIP6 Earth system models further suggest an overall increasing trend of LUE to the end of the 21st century. Our findings highlight the importance of vegetation physiology such as LUE in understanding of enhancement on terrestrial plant photosynthesis and carbon sink under climate change.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.