{"title":"深度挖掘揭示脊椎动物基因组中内源性病毒元件的多样性","authors":"Jose Gabriel Nino Barreat, Aris Katzourakis","doi":"10.1038/s41564-024-01825-4","DOIUrl":null,"url":null,"abstract":"Integration of viruses into host genomes can give rise to endogenous viral elements (EVEs), which provide insights into viral diversity, host range and evolution. A systematic search for EVEs is becoming computationally challenging given the available genomic data. We used a cloud-computing approach to perform a comprehensive search for EVEs in the kingdoms Shotokuvirae and Orthornavirae across vertebrates. We identified 2,040 EVEs in 295 vertebrate genomes and provide evidence for EVEs belonging to the families Chuviridae, Paramyxoviridae, Nairoviridae and Benyviridae. We also find an EVE from the Hepacivirus genus of flaviviruses with orthology across murine rodents. In addition, our analyses revealed that reptarenaviruses and filoviruses probably acquired their glycoprotein ectodomains three times independently from retroviral elements. Taken together, these findings encourage the addition of 4 virus families and the Hepacivirus genus to the growing virus fossil record of vertebrates, providing key insights into their natural history and evolution. Computational cloud-based screen of vertebrate genomes identifies endogenous viral elements of members of the kingdoms Shotokuvirae and Orthornavirae and informs about evolutionary history of non-retroviral elements.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 11","pages":"3013-3024"},"PeriodicalIF":20.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41564-024-01825-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep mining reveals the diversity of endogenous viral elements in vertebrate genomes\",\"authors\":\"Jose Gabriel Nino Barreat, Aris Katzourakis\",\"doi\":\"10.1038/s41564-024-01825-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integration of viruses into host genomes can give rise to endogenous viral elements (EVEs), which provide insights into viral diversity, host range and evolution. A systematic search for EVEs is becoming computationally challenging given the available genomic data. We used a cloud-computing approach to perform a comprehensive search for EVEs in the kingdoms Shotokuvirae and Orthornavirae across vertebrates. We identified 2,040 EVEs in 295 vertebrate genomes and provide evidence for EVEs belonging to the families Chuviridae, Paramyxoviridae, Nairoviridae and Benyviridae. We also find an EVE from the Hepacivirus genus of flaviviruses with orthology across murine rodents. In addition, our analyses revealed that reptarenaviruses and filoviruses probably acquired their glycoprotein ectodomains three times independently from retroviral elements. Taken together, these findings encourage the addition of 4 virus families and the Hepacivirus genus to the growing virus fossil record of vertebrates, providing key insights into their natural history and evolution. Computational cloud-based screen of vertebrate genomes identifies endogenous viral elements of members of the kingdoms Shotokuvirae and Orthornavirae and informs about evolutionary history of non-retroviral elements.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"9 11\",\"pages\":\"3013-3024\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41564-024-01825-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01825-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01825-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Deep mining reveals the diversity of endogenous viral elements in vertebrate genomes
Integration of viruses into host genomes can give rise to endogenous viral elements (EVEs), which provide insights into viral diversity, host range and evolution. A systematic search for EVEs is becoming computationally challenging given the available genomic data. We used a cloud-computing approach to perform a comprehensive search for EVEs in the kingdoms Shotokuvirae and Orthornavirae across vertebrates. We identified 2,040 EVEs in 295 vertebrate genomes and provide evidence for EVEs belonging to the families Chuviridae, Paramyxoviridae, Nairoviridae and Benyviridae. We also find an EVE from the Hepacivirus genus of flaviviruses with orthology across murine rodents. In addition, our analyses revealed that reptarenaviruses and filoviruses probably acquired their glycoprotein ectodomains three times independently from retroviral elements. Taken together, these findings encourage the addition of 4 virus families and the Hepacivirus genus to the growing virus fossil record of vertebrates, providing key insights into their natural history and evolution. Computational cloud-based screen of vertebrate genomes identifies endogenous viral elements of members of the kingdoms Shotokuvirae and Orthornavirae and informs about evolutionary history of non-retroviral elements.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.