Jing Ouyang, Hongyi Tao, Zhiyi Yang, Yim Kwan Wong, Wei Shen Aik, Herman Ho-Yung Sung, Ian Williams, Yangjian Quan
{"title":"用于协同催化的双功能金属有机框架调制器工程","authors":"Jing Ouyang, Hongyi Tao, Zhiyi Yang, Yim Kwan Wong, Wei Shen Aik, Herman Ho-Yung Sung, Ian Williams, Yangjian Quan","doi":"10.1016/j.checat.2024.101155","DOIUrl":null,"url":null,"abstract":"Pursuing both structural uniformity/crystallinity and functional complexity is a long-term goal in functional materials engineering. Often, efforts to enhance one attribute may compromise the other. Herein, we report an elaborate strategy of integrating a catalytic center into a modulator, which enables the one-pot synthesis of a bifunctional metal-organic framework (MOF), <strong>Zr-TBAPy-TSA</strong> (TBAPy = 1,3,6,8-tetrakis(p-benzoic acid)pyrene; TSA = <em>o</em>-thiosalicylic acid). TSA serves as both a modulator for metal-organic framework (MOF) preparation and a catalytic center. <strong>Zr-TBAPy-TSA</strong> is distinguished by its highly uniform and crystalline structure, as evidenced by detailed characterizations including single-crystal X-ray diffraction. Additionally, <strong>Zr-TBAPy-TSA</strong> incorporating both photosensitizer and thiol active centers showcases superior catalytic performance in the activation of element–H bonds (elements include C, B, Si, and P). Due to its less defective structure, extra high turnover numbers of up to 14,200 and good catalyst recyclability are obtained.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"12 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulator engineering of bifunctional metal-organic framework for synergistic catalysis\",\"authors\":\"Jing Ouyang, Hongyi Tao, Zhiyi Yang, Yim Kwan Wong, Wei Shen Aik, Herman Ho-Yung Sung, Ian Williams, Yangjian Quan\",\"doi\":\"10.1016/j.checat.2024.101155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pursuing both structural uniformity/crystallinity and functional complexity is a long-term goal in functional materials engineering. Often, efforts to enhance one attribute may compromise the other. Herein, we report an elaborate strategy of integrating a catalytic center into a modulator, which enables the one-pot synthesis of a bifunctional metal-organic framework (MOF), <strong>Zr-TBAPy-TSA</strong> (TBAPy = 1,3,6,8-tetrakis(p-benzoic acid)pyrene; TSA = <em>o</em>-thiosalicylic acid). TSA serves as both a modulator for metal-organic framework (MOF) preparation and a catalytic center. <strong>Zr-TBAPy-TSA</strong> is distinguished by its highly uniform and crystalline structure, as evidenced by detailed characterizations including single-crystal X-ray diffraction. Additionally, <strong>Zr-TBAPy-TSA</strong> incorporating both photosensitizer and thiol active centers showcases superior catalytic performance in the activation of element–H bonds (elements include C, B, Si, and P). Due to its less defective structure, extra high turnover numbers of up to 14,200 and good catalyst recyclability are obtained.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2024.101155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Modulator engineering of bifunctional metal-organic framework for synergistic catalysis
Pursuing both structural uniformity/crystallinity and functional complexity is a long-term goal in functional materials engineering. Often, efforts to enhance one attribute may compromise the other. Herein, we report an elaborate strategy of integrating a catalytic center into a modulator, which enables the one-pot synthesis of a bifunctional metal-organic framework (MOF), Zr-TBAPy-TSA (TBAPy = 1,3,6,8-tetrakis(p-benzoic acid)pyrene; TSA = o-thiosalicylic acid). TSA serves as both a modulator for metal-organic framework (MOF) preparation and a catalytic center. Zr-TBAPy-TSA is distinguished by its highly uniform and crystalline structure, as evidenced by detailed characterizations including single-crystal X-ray diffraction. Additionally, Zr-TBAPy-TSA incorporating both photosensitizer and thiol active centers showcases superior catalytic performance in the activation of element–H bonds (elements include C, B, Si, and P). Due to its less defective structure, extra high turnover numbers of up to 14,200 and good catalyst recyclability are obtained.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.