来自单环发光体的近红外室温磷光体

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zi-Ang Yan, Chenjia Yin, He Tian, Xiang Ma
{"title":"来自单环发光体的近红外室温磷光体","authors":"Zi-Ang Yan, Chenjia Yin, He Tian, Xiang Ma","doi":"10.1002/anie.202417397","DOIUrl":null,"url":null,"abstract":"Compact luminophores with long emission wavelengths have aroused considerable theoretical and practical interest. Organics with room-temperature phosphorescence (RTP) are also desirable for their longer lifetimes and larger Stokes shifts than fluorescence. Utilizing the low electronic transition energy intrinsic to thiocarbonyl compounds, electron-withdrawing groups were attached to the 4H-pyran-4-thione core to further lower the excited state energies. The resulting mini-phosphors were doped into suitable polymer matrices. These purely organic, amorphous materials emitted near-infrared (NIR) RTP. Having a molar mass of only 162 g·mol-1, one of the phosphors emitted RTP that peaked at 750 nm, with a very large Stokes shift of 15485 cm-1 (403 nm). Thanks to the good processability of the polymer film, light-emitting diodes (LEDs) with NIR emission were easily fabricated by coating doped polymer on ultraviolet LEDs. This work provides an intriguing strategy to achieve NIR RTP using compact luminophores.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Room-Temperature Phosphorescence from Monocyclic Luminophores\",\"authors\":\"Zi-Ang Yan, Chenjia Yin, He Tian, Xiang Ma\",\"doi\":\"10.1002/anie.202417397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact luminophores with long emission wavelengths have aroused considerable theoretical and practical interest. Organics with room-temperature phosphorescence (RTP) are also desirable for their longer lifetimes and larger Stokes shifts than fluorescence. Utilizing the low electronic transition energy intrinsic to thiocarbonyl compounds, electron-withdrawing groups were attached to the 4H-pyran-4-thione core to further lower the excited state energies. The resulting mini-phosphors were doped into suitable polymer matrices. These purely organic, amorphous materials emitted near-infrared (NIR) RTP. Having a molar mass of only 162 g·mol-1, one of the phosphors emitted RTP that peaked at 750 nm, with a very large Stokes shift of 15485 cm-1 (403 nm). Thanks to the good processability of the polymer film, light-emitting diodes (LEDs) with NIR emission were easily fabricated by coating doped polymer on ultraviolet LEDs. This work provides an intriguing strategy to achieve NIR RTP using compact luminophores.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202417397\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417397","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有长发射波长的紧凑型发光体引起了理论界和实践界的极大兴趣。与荧光相比,具有室温磷光(RTP)的有机物寿命更长、斯托克斯位移更大,因此也是人们所希望的。利用硫代羰基化合物固有的低电子过渡能,在 4H- 吡喃-4-硫酮内核上连接了取电子基团,以进一步降低激发态能量。在合适的聚合物基质中掺入由此产生的微型磷酸盐。这些纯有机的无定形材料能发射出近红外(NIR)RTP。其中一种荧光粉的摩尔质量仅为 162 g-mol-1,其发射的 RTP 在 750 纳米处达到峰值,并出现 15485 cm-1 (403 纳米)的巨大斯托克斯偏移。由于聚合物薄膜具有良好的可加工性,通过在紫外发光二极管上涂覆掺杂聚合物,可以很容易地制造出具有近红外发射的发光二极管(LED)。这项工作提供了一种利用紧凑型发光体实现近红外 RTP 的有趣策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-Infrared Room-Temperature Phosphorescence from Monocyclic Luminophores
Compact luminophores with long emission wavelengths have aroused considerable theoretical and practical interest. Organics with room-temperature phosphorescence (RTP) are also desirable for their longer lifetimes and larger Stokes shifts than fluorescence. Utilizing the low electronic transition energy intrinsic to thiocarbonyl compounds, electron-withdrawing groups were attached to the 4H-pyran-4-thione core to further lower the excited state energies. The resulting mini-phosphors were doped into suitable polymer matrices. These purely organic, amorphous materials emitted near-infrared (NIR) RTP. Having a molar mass of only 162 g·mol-1, one of the phosphors emitted RTP that peaked at 750 nm, with a very large Stokes shift of 15485 cm-1 (403 nm). Thanks to the good processability of the polymer film, light-emitting diodes (LEDs) with NIR emission were easily fabricated by coating doped polymer on ultraviolet LEDs. This work provides an intriguing strategy to achieve NIR RTP using compact luminophores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信