氧化离子导电硅酸镧磷灰石催化甲烷部分氧化

IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Afif Pamungkas, Yuta Goto, Kazumasa Murata, Saburo Hosokawa, Satoshi Ogawa, Kosaku Ohishi, Tomohiro Matsumoto, Miwa Saito and Teruki Motohashi
{"title":"氧化离子导电硅酸镧磷灰石催化甲烷部分氧化","authors":"Afif Pamungkas, Yuta Goto, Kazumasa Murata, Saburo Hosokawa, Satoshi Ogawa, Kosaku Ohishi, Tomohiro Matsumoto, Miwa Saito and Teruki Motohashi","doi":"10.1039/D4DT02421D","DOIUrl":null,"url":null,"abstract":"<p >A lanthanum silicate La<small><sub>9.33</sub></small>Si<small><sub>6</sub></small>O<small><sub>26</sub></small> (LSO) crystallizes in an apatite-type structure and has been known as a promising oxide-ion conductor. Here, we report the activity of LSO for catalytic partial oxidation of methane (CPOX) to synthesis gas. The LSO catalyst demonstrated relatively high catalytic activity from 500 to 700 °C, with CH<small><sub>4</sub></small> conversion reaching 22.1% at 700 °C while retaining moderate CO and H<small><sub>2</sub></small> selectivities of 20–60%. Notably, LSO exhibited higher CPOX activity than non-apatite-type La<small><sub>2</sub></small>SiO<small><sub>5</sub></small> despite their similar specific surface areas. The higher CPOX activity of LSO is likely attributed to its structural superiority involving mobile oxide ions in the crystal structure. The reaction kinetic study showed that the reaction orders for methane and oxygen in the CPOX reaction over the LSO catalyst were 0.69–0.73 and 0.08–0.21, respectively. Furthermore, the small contribution of adsorbed O species generated from gas-phase O<small><sub>2</sub></small> molecules indicated that the lattice oxygen may be involved in the reaction mechanism. The kinetic isotope effect (KIE) study using a CD<small><sub>4</sub></small> suggested that C–H bond breaking is the rate-determining step of CPOX over LSO.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 44","pages":" 18021-18026"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic partial oxidation of methane over oxide-ion-conductive lanthanum silicate apatites†\",\"authors\":\"Afif Pamungkas, Yuta Goto, Kazumasa Murata, Saburo Hosokawa, Satoshi Ogawa, Kosaku Ohishi, Tomohiro Matsumoto, Miwa Saito and Teruki Motohashi\",\"doi\":\"10.1039/D4DT02421D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A lanthanum silicate La<small><sub>9.33</sub></small>Si<small><sub>6</sub></small>O<small><sub>26</sub></small> (LSO) crystallizes in an apatite-type structure and has been known as a promising oxide-ion conductor. Here, we report the activity of LSO for catalytic partial oxidation of methane (CPOX) to synthesis gas. The LSO catalyst demonstrated relatively high catalytic activity from 500 to 700 °C, with CH<small><sub>4</sub></small> conversion reaching 22.1% at 700 °C while retaining moderate CO and H<small><sub>2</sub></small> selectivities of 20–60%. Notably, LSO exhibited higher CPOX activity than non-apatite-type La<small><sub>2</sub></small>SiO<small><sub>5</sub></small> despite their similar specific surface areas. The higher CPOX activity of LSO is likely attributed to its structural superiority involving mobile oxide ions in the crystal structure. The reaction kinetic study showed that the reaction orders for methane and oxygen in the CPOX reaction over the LSO catalyst were 0.69–0.73 and 0.08–0.21, respectively. Furthermore, the small contribution of adsorbed O species generated from gas-phase O<small><sub>2</sub></small> molecules indicated that the lattice oxygen may be involved in the reaction mechanism. The kinetic isotope effect (KIE) study using a CD<small><sub>4</sub></small> suggested that C–H bond breaking is the rate-determining step of CPOX over LSO.</p>\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\" 44\",\"pages\":\" 18021-18026\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt02421d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt02421d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

硅酸镧 La9.33Si6O26(LSO)以磷灰石型结构结晶,是一种很有前途的氧化离子导体。在此,我们报告了 LSO 催化甲烷部分氧化(CPOX)转化为合成气的活性。LSO 催化剂在 500 至 700 ℃ 范围内表现出相对较高的催化活性,700 ℃ 时 CH4 转化率达到 22.1%,同时 CO 和 H2 的选择性保持在 20-60% 之间。值得注意的是,与非磷灰石型 La2SiO5 相比,尽管两者的比表面积相似,但 LSO 表现出更高的 CPOX 活性。LSO 具有更高的 CPOX 活性可能是由于其结构上的优越性,晶体结构中含有可移动的氧化物离子。反应动力学研究表明,在 LSO 催化剂上进行 CPOX 反应时,甲烷和氧气的反应阶数分别为 0.69-0.73 和 0.08-0.21。此外,气相 O2 分子产生的吸附 O 物种的贡献很小,这表明晶格氧可能参与了反应机理。使用 CD4 进行的动力学同位素效应(KIE)研究表明,C-H 键断裂是 CPOX 优于 LSO 的速率决定步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Catalytic partial oxidation of methane over oxide-ion-conductive lanthanum silicate apatites†

Catalytic partial oxidation of methane over oxide-ion-conductive lanthanum silicate apatites†

A lanthanum silicate La9.33Si6O26 (LSO) crystallizes in an apatite-type structure and has been known as a promising oxide-ion conductor. Here, we report the activity of LSO for catalytic partial oxidation of methane (CPOX) to synthesis gas. The LSO catalyst demonstrated relatively high catalytic activity from 500 to 700 °C, with CH4 conversion reaching 22.1% at 700 °C while retaining moderate CO and H2 selectivities of 20–60%. Notably, LSO exhibited higher CPOX activity than non-apatite-type La2SiO5 despite their similar specific surface areas. The higher CPOX activity of LSO is likely attributed to its structural superiority involving mobile oxide ions in the crystal structure. The reaction kinetic study showed that the reaction orders for methane and oxygen in the CPOX reaction over the LSO catalyst were 0.69–0.73 and 0.08–0.21, respectively. Furthermore, the small contribution of adsorbed O species generated from gas-phase O2 molecules indicated that the lattice oxygen may be involved in the reaction mechanism. The kinetic isotope effect (KIE) study using a CD4 suggested that C–H bond breaking is the rate-determining step of CPOX over LSO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信