平流层空气的年龄:过程、观测和长期趋势方面的进展

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
H. Garny, F. Ploeger, M. Abalos, H. Bönisch, A. E. Castillo, T. von Clarmann, M. Diallo, A. Engel, J. C. Laube, M. Linz, J. L. Neu, A. Podglajen, E. Ray, L. Rivoire, L. N. Saunders, G. Stiller, F. Voet, T. Wagenhäuser, K. A. Walker
{"title":"平流层空气的年龄:过程、观测和长期趋势方面的进展","authors":"H. Garny,&nbsp;F. Ploeger,&nbsp;M. Abalos,&nbsp;H. Bönisch,&nbsp;A. E. Castillo,&nbsp;T. von Clarmann,&nbsp;M. Diallo,&nbsp;A. Engel,&nbsp;J. C. Laube,&nbsp;M. Linz,&nbsp;J. L. Neu,&nbsp;A. Podglajen,&nbsp;E. Ray,&nbsp;L. Rivoire,&nbsp;L. N. Saunders,&nbsp;G. Stiller,&nbsp;F. Voet,&nbsp;T. Wagenhäuser,&nbsp;K. A. Walker","doi":"10.1029/2023RG000832","DOIUrl":null,"url":null,"abstract":"<p>Age of stratospheric air is a well established metric for the stratospheric transport circulation. Rooted in a robust theoretical framework, this approach offers the benefit of being deducible from observations of trace gases. Given potential climate-induced changes, observational constraints on stratospheric circulation are crucial. In the past two decades, scientific progress has been made in three main areas: (a) Enhanced process understanding and the development of process diagnostics led to better quantification of individual transport processes from observations and to a better understanding of model deficits. (b) The global age of air climatology is now well constrained by observations thanks to improved quality and quantity of data, including global satellite data, and through improved and consistent age calculation methods. (c) It is well established and understood that global models predict a decrease in age, that is, an accelerating stratospheric circulation, in response to forcing by greenhouse gases and ozone depleting substances. Observational records now confirm long-term forced trends in mean age in the lower stratosphere. However, in the mid-stratosphere, uncertainties in observational records are too large to confirm or disprove the model predictions. Continuous monitoring of stratospheric trace gases and further improved methods to derive age from those tracers will be crucial to better constrain variability and long-term trends from observations. Future work on mean age as a metric for stratospheric transport will be important due to its potential to enhance the understanding of stratospheric composition changes, address climate model biases, and assess the impacts of proposed climate geoengineering methods.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"62 4","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000832","citationCount":"0","resultStr":"{\"title\":\"Age of Stratospheric Air: Progress on Processes, Observations, and Long-Term Trends\",\"authors\":\"H. Garny,&nbsp;F. Ploeger,&nbsp;M. Abalos,&nbsp;H. Bönisch,&nbsp;A. E. Castillo,&nbsp;T. von Clarmann,&nbsp;M. Diallo,&nbsp;A. Engel,&nbsp;J. C. Laube,&nbsp;M. Linz,&nbsp;J. L. Neu,&nbsp;A. Podglajen,&nbsp;E. Ray,&nbsp;L. Rivoire,&nbsp;L. N. Saunders,&nbsp;G. Stiller,&nbsp;F. Voet,&nbsp;T. Wagenhäuser,&nbsp;K. A. Walker\",\"doi\":\"10.1029/2023RG000832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Age of stratospheric air is a well established metric for the stratospheric transport circulation. Rooted in a robust theoretical framework, this approach offers the benefit of being deducible from observations of trace gases. Given potential climate-induced changes, observational constraints on stratospheric circulation are crucial. In the past two decades, scientific progress has been made in three main areas: (a) Enhanced process understanding and the development of process diagnostics led to better quantification of individual transport processes from observations and to a better understanding of model deficits. (b) The global age of air climatology is now well constrained by observations thanks to improved quality and quantity of data, including global satellite data, and through improved and consistent age calculation methods. (c) It is well established and understood that global models predict a decrease in age, that is, an accelerating stratospheric circulation, in response to forcing by greenhouse gases and ozone depleting substances. Observational records now confirm long-term forced trends in mean age in the lower stratosphere. However, in the mid-stratosphere, uncertainties in observational records are too large to confirm or disprove the model predictions. Continuous monitoring of stratospheric trace gases and further improved methods to derive age from those tracers will be crucial to better constrain variability and long-term trends from observations. Future work on mean age as a metric for stratospheric transport will be important due to its potential to enhance the understanding of stratospheric composition changes, address climate model biases, and assess the impacts of proposed climate geoengineering methods.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"62 4\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000832\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023RG000832\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023RG000832","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

平流层空气的年龄是平流层传输环流的一个公认指标。这种方法植根于一个强大的理论框架,其优点是可以从痕量气体观测中推导出来。鉴于气候可能引起的变化,对平流层环流的观测制约至关重要。在过去二十年中,主要在三个方面取得了科学进展:(a) 对过程的进一步了解和过程诊断的发展使观测结果更好地量化了各个传输过程,并使人们更好地了解了模型的不足之处。(b) 由于数据(包括全球卫星数据)质量和数量的提高,以及通过改进和一致的年 龄计算方法,全球空气气候学的年龄现在可以很好地受到观测数据的制约。(c) 全球模型预测,在温室气体和消耗臭氧层物质的作用下,气龄下降,即平流层环流加速,这一点已得到公认和理解。现在的观测记录证实了平流层下层平均年龄的长期强迫趋势。然而,在平流层中层,观测记录的不确定性太大,无法证实或推翻模式预测。对平流层痕量气体进行持续监测,并进一步改进从这些示踪剂中得出年龄的方法,对于更好地制约观测结果的变异性和长期趋势至关重要。未来关于平均年龄作为平流层迁移指标的工作将非常重要,因为它有可能加强对平流层成分变化的了解,解决气候模型偏差问题,并评估拟议的气候地球工程方法的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Age of Stratospheric Air: Progress on Processes, Observations, and Long-Term Trends

Age of Stratospheric Air: Progress on Processes, Observations, and Long-Term Trends

Age of stratospheric air is a well established metric for the stratospheric transport circulation. Rooted in a robust theoretical framework, this approach offers the benefit of being deducible from observations of trace gases. Given potential climate-induced changes, observational constraints on stratospheric circulation are crucial. In the past two decades, scientific progress has been made in three main areas: (a) Enhanced process understanding and the development of process diagnostics led to better quantification of individual transport processes from observations and to a better understanding of model deficits. (b) The global age of air climatology is now well constrained by observations thanks to improved quality and quantity of data, including global satellite data, and through improved and consistent age calculation methods. (c) It is well established and understood that global models predict a decrease in age, that is, an accelerating stratospheric circulation, in response to forcing by greenhouse gases and ozone depleting substances. Observational records now confirm long-term forced trends in mean age in the lower stratosphere. However, in the mid-stratosphere, uncertainties in observational records are too large to confirm or disprove the model predictions. Continuous monitoring of stratospheric trace gases and further improved methods to derive age from those tracers will be crucial to better constrain variability and long-term trends from observations. Future work on mean age as a metric for stratospheric transport will be important due to its potential to enhance the understanding of stratospheric composition changes, address climate model biases, and assess the impacts of proposed climate geoengineering methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信