Anchit Srivastava, Andreas Herbst, Mahdi M. Bidhendi, Max Kieker, Francesco Tani, Hanieh Fattahi
{"title":"液体的近派赫兹场镜检查","authors":"Anchit Srivastava, Andreas Herbst, Mahdi M. Bidhendi, Max Kieker, Francesco Tani, Hanieh Fattahi","doi":"10.1038/s41566-024-01548-2","DOIUrl":null,"url":null,"abstract":"<p>Measuring transient optical fields is pivotal not only for understanding ultrafast phenomena but also for the quantitative detection of various molecular species in a sample. Here we demonstrate near-petahertz electric field detection of a few femtosecond pulses with 200 attosecond temporal resolution and subfemtojoule detection sensitivity. By field-resolved detection of the impulsively excited molecules in the liquid phase, termed femtosecond fieldoscopy, we demonstrate temporal isolation of the response of the target molecules from those of the environment and the excitation pulse. In a proof-of-concept analysis of aqueous and liquid samples, we demonstrate field-sensitive detection of combination bands of 4.13 μmol ethanol for the first time. This method expands the scope of aqueous sample analysis to higher detection sensitivity and dynamic range, while the simultaneous direct measurements of phase and intensity information pave the path towards high-resolution biological spectro-microscopy.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"10 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-petahertz fieldoscopy of liquid\",\"authors\":\"Anchit Srivastava, Andreas Herbst, Mahdi M. Bidhendi, Max Kieker, Francesco Tani, Hanieh Fattahi\",\"doi\":\"10.1038/s41566-024-01548-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Measuring transient optical fields is pivotal not only for understanding ultrafast phenomena but also for the quantitative detection of various molecular species in a sample. Here we demonstrate near-petahertz electric field detection of a few femtosecond pulses with 200 attosecond temporal resolution and subfemtojoule detection sensitivity. By field-resolved detection of the impulsively excited molecules in the liquid phase, termed femtosecond fieldoscopy, we demonstrate temporal isolation of the response of the target molecules from those of the environment and the excitation pulse. In a proof-of-concept analysis of aqueous and liquid samples, we demonstrate field-sensitive detection of combination bands of 4.13 μmol ethanol for the first time. This method expands the scope of aqueous sample analysis to higher detection sensitivity and dynamic range, while the simultaneous direct measurements of phase and intensity information pave the path towards high-resolution biological spectro-microscopy.</p>\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-024-01548-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01548-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Measuring transient optical fields is pivotal not only for understanding ultrafast phenomena but also for the quantitative detection of various molecular species in a sample. Here we demonstrate near-petahertz electric field detection of a few femtosecond pulses with 200 attosecond temporal resolution and subfemtojoule detection sensitivity. By field-resolved detection of the impulsively excited molecules in the liquid phase, termed femtosecond fieldoscopy, we demonstrate temporal isolation of the response of the target molecules from those of the environment and the excitation pulse. In a proof-of-concept analysis of aqueous and liquid samples, we demonstrate field-sensitive detection of combination bands of 4.13 μmol ethanol for the first time. This method expands the scope of aqueous sample analysis to higher detection sensitivity and dynamic range, while the simultaneous direct measurements of phase and intensity information pave the path towards high-resolution biological spectro-microscopy.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.