Yesheng Li, Yao Xiong, Xiaolin Zhang, Lei Yin, Yiling Yu, Hao Wang, Lei Liao, Jun He
{"title":"利用范德华金属阴极实现模拟开关和高开/关比率的薄膜晶体管","authors":"Yesheng Li, Yao Xiong, Xiaolin Zhang, Lei Yin, Yiling Yu, Hao Wang, Lei Liao, Jun He","doi":"10.1038/s41928-024-01269-y","DOIUrl":null,"url":null,"abstract":"<p>Neuromorphic computing based on memristors could help meet the growing demand for data-intensive computing applications such as artificial intelligence. Analogue memristors with multiple conductance states are of particular use in high-efficiency neuromorphic computing, but their weight mapping capabilities are typically limited by small on/off ratios. Here we show that memristors with analogue resistive switching and large on/off ratios can be created using two-dimensional van der Waals metallic materials (graphene or platinum ditelluride) as the cathodes. The memristors use silver as the top anode and indium phosphorus sulfide as the switching medium. Previous approaches have focused on modulating ion motion using changes to the resistive switching layer or anode, which can lower the on/off ratios. In contrast, our approach relies on the van der Waals cathode, which allows silver ion intercalation/de-intercalation, creating a high diffusion barrier to modulate ion motion. The strategy can achieve analogue resistive switching with an on/off ratio up to 10<sup>8</sup>, over 8-bit conductance states and attojoule-level power consumption. We use the analogue properties to perform the chip-level simulation of a convolutional neural network that offers high recognition accuracy.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memristors with analogue switching and high on/off ratios using a van der Waals metallic cathode\",\"authors\":\"Yesheng Li, Yao Xiong, Xiaolin Zhang, Lei Yin, Yiling Yu, Hao Wang, Lei Liao, Jun He\",\"doi\":\"10.1038/s41928-024-01269-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuromorphic computing based on memristors could help meet the growing demand for data-intensive computing applications such as artificial intelligence. Analogue memristors with multiple conductance states are of particular use in high-efficiency neuromorphic computing, but their weight mapping capabilities are typically limited by small on/off ratios. Here we show that memristors with analogue resistive switching and large on/off ratios can be created using two-dimensional van der Waals metallic materials (graphene or platinum ditelluride) as the cathodes. The memristors use silver as the top anode and indium phosphorus sulfide as the switching medium. Previous approaches have focused on modulating ion motion using changes to the resistive switching layer or anode, which can lower the on/off ratios. In contrast, our approach relies on the van der Waals cathode, which allows silver ion intercalation/de-intercalation, creating a high diffusion barrier to modulate ion motion. The strategy can achieve analogue resistive switching with an on/off ratio up to 10<sup>8</sup>, over 8-bit conductance states and attojoule-level power consumption. We use the analogue properties to perform the chip-level simulation of a convolutional neural network that offers high recognition accuracy.</p>\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41928-024-01269-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01269-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Memristors with analogue switching and high on/off ratios using a van der Waals metallic cathode
Neuromorphic computing based on memristors could help meet the growing demand for data-intensive computing applications such as artificial intelligence. Analogue memristors with multiple conductance states are of particular use in high-efficiency neuromorphic computing, but their weight mapping capabilities are typically limited by small on/off ratios. Here we show that memristors with analogue resistive switching and large on/off ratios can be created using two-dimensional van der Waals metallic materials (graphene or platinum ditelluride) as the cathodes. The memristors use silver as the top anode and indium phosphorus sulfide as the switching medium. Previous approaches have focused on modulating ion motion using changes to the resistive switching layer or anode, which can lower the on/off ratios. In contrast, our approach relies on the van der Waals cathode, which allows silver ion intercalation/de-intercalation, creating a high diffusion barrier to modulate ion motion. The strategy can achieve analogue resistive switching with an on/off ratio up to 108, over 8-bit conductance states and attojoule-level power consumption. We use the analogue properties to perform the chip-level simulation of a convolutional neural network that offers high recognition accuracy.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.