线粒体机械传导通过 MIEF1 协调核对力的反应

IF 17.3 1区 生物学 Q1 CELL BIOLOGY
Patrizia Romani, Giada Benedetti, Martina Cusan, Mattia Arboit, Carmine Cirillo, Xi Wu, Georgia Rouni, Vassiliki Kostourou, Mariaceleste Aragona, Costanza Giampietro, Paolo Grumati, Graziano Martello, Sirio Dupont
{"title":"线粒体机械传导通过 MIEF1 协调核对力的反应","authors":"Patrizia Romani, Giada Benedetti, Martina Cusan, Mattia Arboit, Carmine Cirillo, Xi Wu, Georgia Rouni, Vassiliki Kostourou, Mariaceleste Aragona, Costanza Giampietro, Paolo Grumati, Graziano Martello, Sirio Dupont","doi":"10.1038/s41556-024-01527-3","DOIUrl":null,"url":null,"abstract":"<p>Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance—YAP/TAZ, SREBP1/2 and NRF2—to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity—hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces\",\"authors\":\"Patrizia Romani, Giada Benedetti, Martina Cusan, Mattia Arboit, Carmine Cirillo, Xi Wu, Georgia Rouni, Vassiliki Kostourou, Mariaceleste Aragona, Costanza Giampietro, Paolo Grumati, Graziano Martello, Sirio Dupont\",\"doi\":\"10.1038/s41556-024-01527-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance—YAP/TAZ, SREBP1/2 and NRF2—to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity—hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.</p>\",\"PeriodicalId\":18977,\"journal\":{\"name\":\"Nature Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41556-024-01527-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-024-01527-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组织尺度的结构和机械特性指导着细胞在生理和疾病条件下的行为,但我们对其潜在机制的了解仍然很片面。在这里,我们展示了细胞外基质硬度、空间限制和外力(包括小鼠皮肤的拉伸)对线粒体动力学的调节作用。肌动蛋白张力促进线粒体伸长因子 1(MIEF1)的磷酸化,限制线粒体中的达因明相关蛋白 1(DRP1)的招募,以及线粒体周围 F-肌动蛋白的形成和线粒体的裂变。引人注目的是,线粒体裂变也是一种普遍的机械传导机制。事实上,我们发现 DRP1 和 MIEF1/2 依赖性裂变需要并足以调控三个具有广泛相关性的转录因子--YAP/TAZ、SREBP1/2 和 NRF2,从而控制细胞增殖、脂肪生成、抗氧化代谢、抗化疗和脂肪细胞分化,以响应机械信号。这延伸到了小鼠肝脏,DRP1 在肝脏中调控肝细胞增殖和依赖 YAP 的特征表型。我们认为线粒体具有统一的信号功能,通过这种功能,机械组织微环境可以协调互补的细胞功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces

Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces

Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance—YAP/TAZ, SREBP1/2 and NRF2—to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity—hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Cell Biology
Nature Cell Biology 生物-细胞生物学
CiteScore
28.40
自引率
0.90%
发文量
219
审稿时长
3 months
期刊介绍: Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to: -Autophagy -Cancer biology -Cell adhesion and migration -Cell cycle and growth -Cell death -Chromatin and epigenetics -Cytoskeletal dynamics -Developmental biology -DNA replication and repair -Mechanisms of human disease -Mechanobiology -Membrane traffic and dynamics -Metabolism -Nuclear organization and dynamics -Organelle biology -Proteolysis and quality control -RNA biology -Signal transduction -Stem cell biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信