{"title":"海水和沉积物中磷的种类、迁移和转化以及在南海北部西沙群岛海星爆发中的潜在作用","authors":"Zhiming Ning, Zhijin Liu, Kefu Yu, Bin Yang, Xueyong Huang, Wei Jiang","doi":"10.1029/2024JC021259","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Periodic outbreaks of crown-of-thorns starfish have led to severe coral reef degradation, with one hypothesized cause being eutrophication. Phosphorus (P) is one of the driving factors for eutrophication, but researches on the spatiotemporal distributions of P in coral reefs are limited, impeding our understanding of the P cycling in coral reefs and its correlation with starfish outbreaks. This study undertook an analysis of various P species, migration and transformation in seawater, sediments, and crown-of-thorns starfish within the coral reefs of the Xisha Islands, northern South China Sea. The results show that in seawater, P predominantly existed in the dissolved phase, with organic P constituting the largest fraction (>67%). Conversely, in sediments, P primarily existed as inorganic form (43%−95%), with calcium-bound P comprising the majority (26%−46%). Notably, exchangeable P accounted for a relatively smaller fraction (9%−20%) but played a significant role as a source of P released from sediments into seawater (0.01−0.17 mmol m<sup>−2</sup> hr<sup>−1</sup>). During starfish outbreaks, starfish (1,000 individuals per hectare) assimilated P from seawater via phytoplankton or corals, resulting in substantial accumulation of both organic and inorganic P in their tissues (69−315 μmol g<sup>−1</sup>). Meanwhile, starfish excretion released P back into the seawater, which contributes to the migration and transformation of various P forms. Historical data also show a close relationship between P content and starfish density. These findings highlight the interactions between starfish and P cycling within coral reefs, and provide valuable insights into conservation and restoration on coral reefs, especially those severely affected by starfish outbreaks.</p>\n </section>\n </div>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"129 10","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorus Speciation, Migration and Transformation in Seawater and Sediments and Potential Role in Starfish Outbreaks of the Xisha Islands, Northern South China Sea\",\"authors\":\"Zhiming Ning, Zhijin Liu, Kefu Yu, Bin Yang, Xueyong Huang, Wei Jiang\",\"doi\":\"10.1029/2024JC021259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Periodic outbreaks of crown-of-thorns starfish have led to severe coral reef degradation, with one hypothesized cause being eutrophication. Phosphorus (P) is one of the driving factors for eutrophication, but researches on the spatiotemporal distributions of P in coral reefs are limited, impeding our understanding of the P cycling in coral reefs and its correlation with starfish outbreaks. This study undertook an analysis of various P species, migration and transformation in seawater, sediments, and crown-of-thorns starfish within the coral reefs of the Xisha Islands, northern South China Sea. The results show that in seawater, P predominantly existed in the dissolved phase, with organic P constituting the largest fraction (>67%). Conversely, in sediments, P primarily existed as inorganic form (43%−95%), with calcium-bound P comprising the majority (26%−46%). Notably, exchangeable P accounted for a relatively smaller fraction (9%−20%) but played a significant role as a source of P released from sediments into seawater (0.01−0.17 mmol m<sup>−2</sup> hr<sup>−1</sup>). During starfish outbreaks, starfish (1,000 individuals per hectare) assimilated P from seawater via phytoplankton or corals, resulting in substantial accumulation of both organic and inorganic P in their tissues (69−315 μmol g<sup>−1</sup>). Meanwhile, starfish excretion released P back into the seawater, which contributes to the migration and transformation of various P forms. Historical data also show a close relationship between P content and starfish density. These findings highlight the interactions between starfish and P cycling within coral reefs, and provide valuable insights into conservation and restoration on coral reefs, especially those severely affected by starfish outbreaks.</p>\\n </section>\\n </div>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"129 10\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021259\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021259","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
刺冠海星的周期性爆发导致珊瑚礁严重退化,其中一个假定的原因是富营养化。磷(P)是富营养化的驱动因素之一,但对珊瑚礁中磷的时空分布研究有限,这阻碍了我们对珊瑚礁中磷循环及其与海星爆发相关性的了解。本研究对南海北部西沙群岛珊瑚礁内海水、沉积物和棘冠海星中各种 P 的种类、迁移和转化进行了分析。结果表明,在海水中,磷主要存在于溶解相中,其中有机磷所占比例最大(67%)。相反,在沉积物中,钾主要以无机形式存在(43%-95%),其中钙结合钾占绝大部分(26%-46%)。值得注意的是,可交换态磷所占比例相对较小(9%-20%),但作为从沉积物释放到海水中的态磷来源(0.01-0.17 mmol m-2 hr-1),它发挥着重要作用。在海星爆发期间,海星(每公顷 1,000 个)通过浮游植物或珊瑚从海水中吸收 P,导致其组织中有机和无机 P 大量积累(69-315 μmol g-1)。同时,海星的排泄又将 P 释放回海水中,从而促进了各种 P 形态的迁移和转化。历史数据还显示,P 含量与海星密度之间存在密切关系。这些发现突显了海星与珊瑚礁内磷循环之间的相互作用,为珊瑚礁的保护和恢复,尤其是受海星爆发严重影响的珊瑚礁的保护和恢复提供了有价值的见解。
Phosphorus Speciation, Migration and Transformation in Seawater and Sediments and Potential Role in Starfish Outbreaks of the Xisha Islands, Northern South China Sea
Periodic outbreaks of crown-of-thorns starfish have led to severe coral reef degradation, with one hypothesized cause being eutrophication. Phosphorus (P) is one of the driving factors for eutrophication, but researches on the spatiotemporal distributions of P in coral reefs are limited, impeding our understanding of the P cycling in coral reefs and its correlation with starfish outbreaks. This study undertook an analysis of various P species, migration and transformation in seawater, sediments, and crown-of-thorns starfish within the coral reefs of the Xisha Islands, northern South China Sea. The results show that in seawater, P predominantly existed in the dissolved phase, with organic P constituting the largest fraction (>67%). Conversely, in sediments, P primarily existed as inorganic form (43%−95%), with calcium-bound P comprising the majority (26%−46%). Notably, exchangeable P accounted for a relatively smaller fraction (9%−20%) but played a significant role as a source of P released from sediments into seawater (0.01−0.17 mmol m−2 hr−1). During starfish outbreaks, starfish (1,000 individuals per hectare) assimilated P from seawater via phytoplankton or corals, resulting in substantial accumulation of both organic and inorganic P in their tissues (69−315 μmol g−1). Meanwhile, starfish excretion released P back into the seawater, which contributes to the migration and transformation of various P forms. Historical data also show a close relationship between P content and starfish density. These findings highlight the interactions between starfish and P cycling within coral reefs, and provide valuable insights into conservation and restoration on coral reefs, especially those severely affected by starfish outbreaks.