用于研究室内环境中病原体传播的呼吸模拟器

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Indoor air Pub Date : 2024-10-19 DOI:10.1155/2024/8368202
Claudio Mucignat, Bernhard Roth, Ivan Lunati
{"title":"用于研究室内环境中病原体传播的呼吸模拟器","authors":"Claudio Mucignat,&nbsp;Bernhard Roth,&nbsp;Ivan Lunati","doi":"10.1155/2024/8368202","DOIUrl":null,"url":null,"abstract":"<p>Detailed investigation of pathogen transmission by respiratory droplets requires extensive experimental datasets with high spatial–temporal resolution in a wide range of ambient conditions. Respiratory simulators are attractive tools for those measurements, because they improve repeatability, endurance, and control of experimental conditions with respect to studies on human subjects. They also enable the use of powerful experimental techniques, which may raise health concerns if employed on humans. In this paper, we design and present a respiratory simulator, which is capable of accurately reproducing physiological flow rate profiles and allows the investigation of the spatial and temporal features of the exhaust flow by background-oriented schlieren (BOS) and particle image velocimetry (PIV). We use laser interferometry and high-magnification shadowgraphy to verify the size distributions of the emitted droplets, and we quantify the evolution of the droplet concentration during cough events by Mie scattering analysis. The experiments demonstrate the ability of the respiratory simulator to generate highly reproducible cough events with precise and controllable droplet size distributions over a wide range of flow rates.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8368202","citationCount":"0","resultStr":"{\"title\":\"A Respiratory Simulator for the Study of Pathogen Transmission in Indoor Environments\",\"authors\":\"Claudio Mucignat,&nbsp;Bernhard Roth,&nbsp;Ivan Lunati\",\"doi\":\"10.1155/2024/8368202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detailed investigation of pathogen transmission by respiratory droplets requires extensive experimental datasets with high spatial–temporal resolution in a wide range of ambient conditions. Respiratory simulators are attractive tools for those measurements, because they improve repeatability, endurance, and control of experimental conditions with respect to studies on human subjects. They also enable the use of powerful experimental techniques, which may raise health concerns if employed on humans. In this paper, we design and present a respiratory simulator, which is capable of accurately reproducing physiological flow rate profiles and allows the investigation of the spatial and temporal features of the exhaust flow by background-oriented schlieren (BOS) and particle image velocimetry (PIV). We use laser interferometry and high-magnification shadowgraphy to verify the size distributions of the emitted droplets, and we quantify the evolution of the droplet concentration during cough events by Mie scattering analysis. The experiments demonstrate the ability of the respiratory simulator to generate highly reproducible cough events with precise and controllable droplet size distributions over a wide range of flow rates.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8368202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8368202\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8368202","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

要详细研究呼吸道飞沫传播病原体的情况,需要在各种环境条件下建立具有高时空分辨率的大量实验数据集。呼吸模拟器是进行这些测量的极具吸引力的工具,因为相对于人体研究而言,它们提高了实验条件的可重复性、耐久性和可控性。它们还能使用强大的实验技术,但如果在人体上使用这些技术,可能会引发健康问题。在本文中,我们设计并展示了一种呼吸模拟器,它能够准确再现生理流速曲线,并允许通过背景光斑(BOS)和粒子图像测速(PIV)研究排气流的空间和时间特征。我们使用激光干涉仪和高倍率阴影成像技术来验证发射液滴的大小分布,并通过米氏散射分析来量化咳嗽过程中液滴浓度的变化。实验证明,呼吸模拟器有能力在很宽的流速范围内生成具有精确和可控液滴大小分布的高度重现性咳嗽事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Respiratory Simulator for the Study of Pathogen Transmission in Indoor Environments

A Respiratory Simulator for the Study of Pathogen Transmission in Indoor Environments

Detailed investigation of pathogen transmission by respiratory droplets requires extensive experimental datasets with high spatial–temporal resolution in a wide range of ambient conditions. Respiratory simulators are attractive tools for those measurements, because they improve repeatability, endurance, and control of experimental conditions with respect to studies on human subjects. They also enable the use of powerful experimental techniques, which may raise health concerns if employed on humans. In this paper, we design and present a respiratory simulator, which is capable of accurately reproducing physiological flow rate profiles and allows the investigation of the spatial and temporal features of the exhaust flow by background-oriented schlieren (BOS) and particle image velocimetry (PIV). We use laser interferometry and high-magnification shadowgraphy to verify the size distributions of the emitted droplets, and we quantify the evolution of the droplet concentration during cough events by Mie scattering analysis. The experiments demonstrate the ability of the respiratory simulator to generate highly reproducible cough events with precise and controllable droplet size distributions over a wide range of flow rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信