Zheshun Pi, Weici Liu, Chenghu Song, Chuandong Zhu, Jiwei Liu, Lu Wang, Zhao He, Chengliang Yang, Lei Wu, Tianshuo Liu, Zijie Geng, Scott J. Tebbutt, Ningning Liu, Yuan Wan, Faming Zhang, Wenjun Mao
{"title":"免疫肿瘤学-微生物组轴的多层次见解:从生物技术到新型疗法","authors":"Zheshun Pi, Weici Liu, Chenghu Song, Chuandong Zhu, Jiwei Liu, Lu Wang, Zhao He, Chengliang Yang, Lei Wu, Tianshuo Liu, Zijie Geng, Scott J. Tebbutt, Ningning Liu, Yuan Wan, Faming Zhang, Wenjun Mao","doi":"10.1002/imt2.240","DOIUrl":null,"url":null,"abstract":"<p>The multifaceted interactions among the immune system, cancer cells and microbial components have established a novel concept of the immuno-oncology-microbiome (IOM) axis. Microbiome sequencing technologies have played a pivotal role in not only analyzing how gut microbiota affect local and distant tumors, but also providing unprecedented insights into the intratumor host-microbe interactions. Herein, we discuss the emerging trends of transiting from bulk-level to single cell- and spatial-level analyses. Moving forward with advances in biotechnology, microbial therapies, including microbiota-based therapies and bioengineering-inspired microbes, will add diversity to the current oncotherapy paradigm.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 5","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.240","citationCount":"0","resultStr":"{\"title\":\"Multi-level insights into the immuno-oncology-microbiome axis: From biotechnology to novel therapies\",\"authors\":\"Zheshun Pi, Weici Liu, Chenghu Song, Chuandong Zhu, Jiwei Liu, Lu Wang, Zhao He, Chengliang Yang, Lei Wu, Tianshuo Liu, Zijie Geng, Scott J. Tebbutt, Ningning Liu, Yuan Wan, Faming Zhang, Wenjun Mao\",\"doi\":\"10.1002/imt2.240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The multifaceted interactions among the immune system, cancer cells and microbial components have established a novel concept of the immuno-oncology-microbiome (IOM) axis. Microbiome sequencing technologies have played a pivotal role in not only analyzing how gut microbiota affect local and distant tumors, but also providing unprecedented insights into the intratumor host-microbe interactions. Herein, we discuss the emerging trends of transiting from bulk-level to single cell- and spatial-level analyses. Moving forward with advances in biotechnology, microbial therapies, including microbiota-based therapies and bioengineering-inspired microbes, will add diversity to the current oncotherapy paradigm.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":73342,\"journal\":{\"name\":\"iMeta\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":23.7000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.240\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iMeta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/imt2.240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Multi-level insights into the immuno-oncology-microbiome axis: From biotechnology to novel therapies
The multifaceted interactions among the immune system, cancer cells and microbial components have established a novel concept of the immuno-oncology-microbiome (IOM) axis. Microbiome sequencing technologies have played a pivotal role in not only analyzing how gut microbiota affect local and distant tumors, but also providing unprecedented insights into the intratumor host-microbe interactions. Herein, we discuss the emerging trends of transiting from bulk-level to single cell- and spatial-level analyses. Moving forward with advances in biotechnology, microbial therapies, including microbiota-based therapies and bioengineering-inspired microbes, will add diversity to the current oncotherapy paradigm.