Aleksandra Gomułka, Oliwia Iwaszko, Andrzej Kowalczyk, Zofia Piwowarska, Małgorzata Rutkowska, Lucjan Chmielarz
{"title":"通过改良模板离子交换法将 MCM-41 和 MCM-48 与铜催化官能化,用于低温 NH3-SCR 过程:络合剂对铜分散的作用","authors":"Aleksandra Gomułka, Oliwia Iwaszko, Andrzej Kowalczyk, Zofia Piwowarska, Małgorzata Rutkowska, Lucjan Chmielarz","doi":"10.1007/s11164-024-05414-2","DOIUrl":null,"url":null,"abstract":"<div><p>Mesoporous silicas of MCM-41 and MCM-48 types were synthesized and modified with copper by template ion-exchange (TIE) technique. A high dispersion of deposited copper species was managed by subsequent treatment of the samples with ammonia, urea, or acetonitrile solution. Copper-modified silicas were analysed in terms of their chemical composition (ICP-OES), ordering of porous structure (XRD), textural parameters (low-temperature N<sub>2</sub> sorption), dispersion and form of introduced copper species (UV–vis-DR, XRD, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD). Mesoporous silicas modified with copper exhibited promising catalytic efficiency in selective catalytic reduction of NO with ammonia (NH<sub>3</sub>-SCR). The samples containing dispersed copper species (predominantly monomeric copper cations) presented enhanced catalytic activity compared to catalysts containing CuO aggregates. On the other hand, CuO aggregates showed greater catalytic activity in the side process of direct ammonia oxidation by oxygen present in the reaction mixture. It was demonstrated that TIE post-treatment of the samples with urea resulted in most effective improving dispersion of deposited copper and is less destructive for ordered porous structures of mesoporous silica comparing to treatment with ammonia solution.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"50 11","pages":"5399 - 5426"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11164-024-05414-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Catalytic functionalization of MCM-41 and MCM-48 with copper by modified template ion-exchange method for low-temperature NH3-SCR process: the role of complexing agents for copper dispersion\",\"authors\":\"Aleksandra Gomułka, Oliwia Iwaszko, Andrzej Kowalczyk, Zofia Piwowarska, Małgorzata Rutkowska, Lucjan Chmielarz\",\"doi\":\"10.1007/s11164-024-05414-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mesoporous silicas of MCM-41 and MCM-48 types were synthesized and modified with copper by template ion-exchange (TIE) technique. A high dispersion of deposited copper species was managed by subsequent treatment of the samples with ammonia, urea, or acetonitrile solution. Copper-modified silicas were analysed in terms of their chemical composition (ICP-OES), ordering of porous structure (XRD), textural parameters (low-temperature N<sub>2</sub> sorption), dispersion and form of introduced copper species (UV–vis-DR, XRD, H<sub>2</sub>-TPR, NH<sub>3</sub>-TPD). Mesoporous silicas modified with copper exhibited promising catalytic efficiency in selective catalytic reduction of NO with ammonia (NH<sub>3</sub>-SCR). The samples containing dispersed copper species (predominantly monomeric copper cations) presented enhanced catalytic activity compared to catalysts containing CuO aggregates. On the other hand, CuO aggregates showed greater catalytic activity in the side process of direct ammonia oxidation by oxygen present in the reaction mixture. It was demonstrated that TIE post-treatment of the samples with urea resulted in most effective improving dispersion of deposited copper and is less destructive for ordered porous structures of mesoporous silica comparing to treatment with ammonia solution.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":753,\"journal\":{\"name\":\"Research on Chemical Intermediates\",\"volume\":\"50 11\",\"pages\":\"5399 - 5426\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11164-024-05414-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research on Chemical Intermediates\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11164-024-05414-2\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05414-2","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Catalytic functionalization of MCM-41 and MCM-48 with copper by modified template ion-exchange method for low-temperature NH3-SCR process: the role of complexing agents for copper dispersion
Mesoporous silicas of MCM-41 and MCM-48 types were synthesized and modified with copper by template ion-exchange (TIE) technique. A high dispersion of deposited copper species was managed by subsequent treatment of the samples with ammonia, urea, or acetonitrile solution. Copper-modified silicas were analysed in terms of their chemical composition (ICP-OES), ordering of porous structure (XRD), textural parameters (low-temperature N2 sorption), dispersion and form of introduced copper species (UV–vis-DR, XRD, H2-TPR, NH3-TPD). Mesoporous silicas modified with copper exhibited promising catalytic efficiency in selective catalytic reduction of NO with ammonia (NH3-SCR). The samples containing dispersed copper species (predominantly monomeric copper cations) presented enhanced catalytic activity compared to catalysts containing CuO aggregates. On the other hand, CuO aggregates showed greater catalytic activity in the side process of direct ammonia oxidation by oxygen present in the reaction mixture. It was demonstrated that TIE post-treatment of the samples with urea resulted in most effective improving dispersion of deposited copper and is less destructive for ordered porous structures of mesoporous silica comparing to treatment with ammonia solution.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.