碳化钨在压力下的电热爆炸:伴随的相变

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
V. T. Telepa, M. I. Alymov, A. V. Shcherbakov
{"title":"碳化钨在压力下的电热爆炸:伴随的相变","authors":"V. T. Telepa,&nbsp;M. I. Alymov,&nbsp;A. V. Shcherbakov","doi":"10.1134/S1067821224600273","DOIUrl":null,"url":null,"abstract":"<p>Phase transformations taking place during synthesis of WC by electrothermal explosion (ETE) were investigated within the following range of process parameters: <i>T</i> = 293–3700 K, 49.8–50.2 at % C, <i>P</i> = 96 MPa, <i>V</i> = 10 V, <i>I</i> = 20 МА/m<sup>2</sup>, sample diameter of 20 mm. The thermogram of the ETE process was subdivided into four stages (I–IV). Stage I, warmup, temperature range of 293–563 K, endothermic reaction (isothermic plateau), input electric energy <i>Q</i> = 2.96 kJ, specific input energy <i>Е</i> = 111.6 kJ/mol. Low-temperature stage II, 563–1190 K, ignition, <i>Q</i> = 5.46 kJ, <i>Е</i><sub>а</sub> = 109.2 kJ/mol. High-temperature stage III, 1190–2695 K, eutectoid decay, order–disorder transformation, <i>Q</i> = 14.25 kJ, <i>Е</i><sub>а</sub> = 424 kJ/mol. Stage IV, melting, 2695–3695 K, <i>Q</i> = 14.31 kJ, <i>Е</i><sub>а</sub> = 143.2 kJ/mol. The rate of ETE reaction is highly sensitive to applied pressure, concentration of reagents, sample shape, oxide film, etc. Variation in <i>E</i> affords facile control of the ETE process.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"64 4-6","pages":"71 - 76"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tungsten Carbide by Electrothermal Explosion under Pressure: Accompanying Phase Transformations\",\"authors\":\"V. T. Telepa,&nbsp;M. I. Alymov,&nbsp;A. V. Shcherbakov\",\"doi\":\"10.1134/S1067821224600273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phase transformations taking place during synthesis of WC by electrothermal explosion (ETE) were investigated within the following range of process parameters: <i>T</i> = 293–3700 K, 49.8–50.2 at % C, <i>P</i> = 96 MPa, <i>V</i> = 10 V, <i>I</i> = 20 МА/m<sup>2</sup>, sample diameter of 20 mm. The thermogram of the ETE process was subdivided into four stages (I–IV). Stage I, warmup, temperature range of 293–563 K, endothermic reaction (isothermic plateau), input electric energy <i>Q</i> = 2.96 kJ, specific input energy <i>Е</i> = 111.6 kJ/mol. Low-temperature stage II, 563–1190 K, ignition, <i>Q</i> = 5.46 kJ, <i>Е</i><sub>а</sub> = 109.2 kJ/mol. High-temperature stage III, 1190–2695 K, eutectoid decay, order–disorder transformation, <i>Q</i> = 14.25 kJ, <i>Е</i><sub>а</sub> = 424 kJ/mol. Stage IV, melting, 2695–3695 K, <i>Q</i> = 14.31 kJ, <i>Е</i><sub>а</sub> = 143.2 kJ/mol. The rate of ETE reaction is highly sensitive to applied pressure, concentration of reagents, sample shape, oxide film, etc. Variation in <i>E</i> affords facile control of the ETE process.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"64 4-6\",\"pages\":\"71 - 76\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1067821224600273\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821224600273","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究了电热爆炸(ETE)合成碳化钨过程中在以下工艺参数范围内发生的相变:T = 293-3700 K,49.8-50.2 % C,P = 96 MPa,V = 10 V,I = 20 МА/m2,样品直径 20 mm。ETE 过程的热图细分为四个阶段(I-IV)。第一阶段,预热,温度范围为 293-563 K,内热反应(等温平台),输入电能 Q = 2.96 kJ,输入比能量 Е = 111.6 kJ/mol。低温阶段 II,563-1190 K,点火,Q = 5.46 kJ,Еа = 109.2 kJ/mol。高温阶段 III,1190-2695 K,共晶衰变,有序-无序转变,Q = 14.25 kJ,Еа = 424 kJ/mol。第四阶段,熔化,2695-3695 K,Q = 14.31 kJ,Еа = 143.2 kJ/mol。ETE 反应的速率对施加的压力、试剂浓度、样品形状、氧化膜等非常敏感。E 的变化可以方便地控制 ETE 过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tungsten Carbide by Electrothermal Explosion under Pressure: Accompanying Phase Transformations

Tungsten Carbide by Electrothermal Explosion under Pressure: Accompanying Phase Transformations

Phase transformations taking place during synthesis of WC by electrothermal explosion (ETE) were investigated within the following range of process parameters: T = 293–3700 K, 49.8–50.2 at % C, P = 96 MPa, V = 10 V, I = 20 МА/m2, sample diameter of 20 mm. The thermogram of the ETE process was subdivided into four stages (I–IV). Stage I, warmup, temperature range of 293–563 K, endothermic reaction (isothermic plateau), input electric energy Q = 2.96 kJ, specific input energy Е = 111.6 kJ/mol. Low-temperature stage II, 563–1190 K, ignition, Q = 5.46 kJ, Еа = 109.2 kJ/mol. High-temperature stage III, 1190–2695 K, eutectoid decay, order–disorder transformation, Q = 14.25 kJ, Еа = 424 kJ/mol. Stage IV, melting, 2695–3695 K, Q = 14.31 kJ, Еа = 143.2 kJ/mol. The rate of ETE reaction is highly sensitive to applied pressure, concentration of reagents, sample shape, oxide film, etc. Variation in E affords facile control of the ETE process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信