Alain P. Gobert, Yvonne L. Latour, Kara M. McNamara, Caroline V. Hawkins, Kamery J. Williams, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Alberto G. Delgado, Ginger L. Milne, Shilin Zhao, M. Blanca Piazuelo, M. Kay Washington, Lori A. Coburn, Keith T. Wilson
{"title":"反向转硫化途径影响小鼠结肠微生物群并导致结肠炎","authors":"Alain P. Gobert, Yvonne L. Latour, Kara M. McNamara, Caroline V. Hawkins, Kamery J. Williams, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Alberto G. Delgado, Ginger L. Milne, Shilin Zhao, M. Blanca Piazuelo, M. Kay Washington, Lori A. Coburn, Keith T. Wilson","doi":"10.1007/s00726-024-03423-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen <i>Helicobacter pylori</i>. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of <i>Cth</i><sup>–/–</sup> mice. We observed that clinical and histological parameters are ameliorated in <i>Cth</i>-deficient mice compared to wild-type animals. However, <i>Cth</i> deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene <i>Slc7a11</i> encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in <i>Cth</i><sup>–/–</sup> mice compared to both WT and <i>Slc7a11</i><sup>–/–</sup> mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"56 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03423-4.pdf","citationCount":"0","resultStr":"{\"title\":\"The reverse transsulfuration pathway affects the colonic microbiota and contributes to colitis in mice\",\"authors\":\"Alain P. Gobert, Yvonne L. Latour, Kara M. McNamara, Caroline V. Hawkins, Kamery J. Williams, Mohammad Asim, Daniel P. Barry, Margaret M. Allaman, Alberto G. Delgado, Ginger L. Milne, Shilin Zhao, M. Blanca Piazuelo, M. Kay Washington, Lori A. Coburn, Keith T. Wilson\",\"doi\":\"10.1007/s00726-024-03423-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen <i>Helicobacter pylori</i>. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of <i>Cth</i><sup>–/–</sup> mice. We observed that clinical and histological parameters are ameliorated in <i>Cth</i>-deficient mice compared to wild-type animals. However, <i>Cth</i> deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene <i>Slc7a11</i> encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in <i>Cth</i><sup>–/–</sup> mice compared to both WT and <i>Slc7a11</i><sup>–/–</sup> mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.</p></div>\",\"PeriodicalId\":7810,\"journal\":{\"name\":\"Amino Acids\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00726-024-03423-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amino Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00726-024-03423-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-024-03423-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The reverse transsulfuration pathway affects the colonic microbiota and contributes to colitis in mice
Cystathionine γ-lyase (CTH) is a critical enzyme in the reverse transsulfuration pathway, the major route for the metabolism of sulfur-containing amino acids, notably converting cystathionine to cysteine. We reported that CTH supports gastritis induced by the pathogen Helicobacter pylori. Herein our aim was to investigate the role of CTH in colonic inflammation. First, we found that CTH is induced in the colon mucosa in mice with dextran sulfate sodium-induced colitis. Expression of CTH was completely absent in the colon of Cth–/– mice. We observed that clinical and histological parameters are ameliorated in Cth-deficient mice compared to wild-type animals. However, Cth deletion had no effect on tumorigenesis and the level of dysplasia in mice treated with azoxymethane-DSS, as a reliable model of colitis-associated carcinogenesis. Mechanistically, we determined that the deletion of the gene Slc7a11 encoding for solute carrier family 7 member 11, the transporter of the anionic form of cysteine, does not affect DSS colitis. Lastly, we found that the richness and diversity of the fecal microbiota were significantly increased in Cth–/– mice compared to both WT and Slc7a11–/– mice. In conclusion, our data suggest that the enzyme CTH represents a target for clinical intervention in patients with inflammatory bowel disease, potentially by beneficially reshaping the composition of the gut microbiota.
期刊介绍:
Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology