{"title":"高效、可扩展的智能农业物联网框架","authors":"Imad Jawhar;Samar Sindian;Sara Shreif;Mahmoud Ezzdine;Bilal Hammoud","doi":"10.1109/LSENS.2024.3476940","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) advancements have provided significant benefits to the agriculture sector in rationing water usage and monitoring the growth of vegetation. This article presents an efficient and scalable IoT framework for smart farming. It is based on a wireless sensor actuator network (WSAN) that logs the farm's environmental parameters into a network control center for processing and monitoring. Furthermore, a new addressing scheme for the WSAN nodes is proposed, which features the scalability of the proposed solution. To test and evaluate the architecture's performance, simulations are conducted to measure water consumption and time to network failure. Results confirm the efficiency and the reliability of the proposed scalable network as a proof of concept of the proposed work.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient and Scalable Internet of Things Framework for Smart Farming\",\"authors\":\"Imad Jawhar;Samar Sindian;Sara Shreif;Mahmoud Ezzdine;Bilal Hammoud\",\"doi\":\"10.1109/LSENS.2024.3476940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) advancements have provided significant benefits to the agriculture sector in rationing water usage and monitoring the growth of vegetation. This article presents an efficient and scalable IoT framework for smart farming. It is based on a wireless sensor actuator network (WSAN) that logs the farm's environmental parameters into a network control center for processing and monitoring. Furthermore, a new addressing scheme for the WSAN nodes is proposed, which features the scalability of the proposed solution. To test and evaluate the architecture's performance, simulations are conducted to measure water consumption and time to network failure. Results confirm the efficiency and the reliability of the proposed scalable network as a proof of concept of the proposed work.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 11\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10710175/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10710175/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Efficient and Scalable Internet of Things Framework for Smart Farming
Internet of Things (IoT) advancements have provided significant benefits to the agriculture sector in rationing water usage and monitoring the growth of vegetation. This article presents an efficient and scalable IoT framework for smart farming. It is based on a wireless sensor actuator network (WSAN) that logs the farm's environmental parameters into a network control center for processing and monitoring. Furthermore, a new addressing scheme for the WSAN nodes is proposed, which features the scalability of the proposed solution. To test and evaluate the architecture's performance, simulations are conducted to measure water consumption and time to network failure. Results confirm the efficiency and the reliability of the proposed scalable network as a proof of concept of the proposed work.