{"title":"用于人体热量收集的热电发生器的自供电独立性能","authors":"Anshu Panbude;Pandiyarasan Veluswamy","doi":"10.1109/LSENS.2024.3456289","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a self-powered thermoelectric generator (TEG) to map out the thermal energy to electricity conversion. The wearable flexible thermoelectric generator (FTEG) could generate electric potential from the human skin and environment. The FTEG comes into consideration as an auxiliary supply/passive sensor for power generation to self-charge mode. In this letter, we study the reliability of the FTEG to resist chemicals, water, and moisture. For long-term reliability of the wearable FTEGs, the electrical, mechanical, and thermal performances are significant. The 8-leg FTEG in outdoor conditions at merely 2 °C temperature gradient between human skin and the environment generates an output potential of 0.63 mV to display its sensitivity to temperature variations. The simple fabrication of the TEG performance is stable under water to demonstrate the weathering protection and can withstand 1300 bending cycles. In addition, the interfacial microstructures are investigated to understand the effects of mechanical stress on the thermoelectric leg and bonding material. The mechanical strength to bend and withstand the electrical parameters without significant changes makes it an outstanding candidate for wearable applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Powered Standalone Performance of Thermoelectric Generator for Body Heat Harvesting\",\"authors\":\"Anshu Panbude;Pandiyarasan Veluswamy\",\"doi\":\"10.1109/LSENS.2024.3456289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we propose a self-powered thermoelectric generator (TEG) to map out the thermal energy to electricity conversion. The wearable flexible thermoelectric generator (FTEG) could generate electric potential from the human skin and environment. The FTEG comes into consideration as an auxiliary supply/passive sensor for power generation to self-charge mode. In this letter, we study the reliability of the FTEG to resist chemicals, water, and moisture. For long-term reliability of the wearable FTEGs, the electrical, mechanical, and thermal performances are significant. The 8-leg FTEG in outdoor conditions at merely 2 °C temperature gradient between human skin and the environment generates an output potential of 0.63 mV to display its sensitivity to temperature variations. The simple fabrication of the TEG performance is stable under water to demonstrate the weathering protection and can withstand 1300 bending cycles. In addition, the interfacial microstructures are investigated to understand the effects of mechanical stress on the thermoelectric leg and bonding material. The mechanical strength to bend and withstand the electrical parameters without significant changes makes it an outstanding candidate for wearable applications.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 11\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669749/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669749/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Self-Powered Standalone Performance of Thermoelectric Generator for Body Heat Harvesting
In this letter, we propose a self-powered thermoelectric generator (TEG) to map out the thermal energy to electricity conversion. The wearable flexible thermoelectric generator (FTEG) could generate electric potential from the human skin and environment. The FTEG comes into consideration as an auxiliary supply/passive sensor for power generation to self-charge mode. In this letter, we study the reliability of the FTEG to resist chemicals, water, and moisture. For long-term reliability of the wearable FTEGs, the electrical, mechanical, and thermal performances are significant. The 8-leg FTEG in outdoor conditions at merely 2 °C temperature gradient between human skin and the environment generates an output potential of 0.63 mV to display its sensitivity to temperature variations. The simple fabrication of the TEG performance is stable under water to demonstrate the weathering protection and can withstand 1300 bending cycles. In addition, the interfacial microstructures are investigated to understand the effects of mechanical stress on the thermoelectric leg and bonding material. The mechanical strength to bend and withstand the electrical parameters without significant changes makes it an outstanding candidate for wearable applications.