用于 xEV 充电推荐系统的物理信息冷启动能力

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Raik Orbay;Aditya Pratap Singh;Johannes Emilsson;Michele Becciani;Evelina Wikner;Victor Gustafson;Torbjörn Thiringer
{"title":"用于 xEV 充电推荐系统的物理信息冷启动能力","authors":"Raik Orbay;Aditya Pratap Singh;Johannes Emilsson;Michele Becciani;Evelina Wikner;Victor Gustafson;Torbjörn Thiringer","doi":"10.1109/OJVT.2024.3469577","DOIUrl":null,"url":null,"abstract":"An effortless charging experience will boost electric vehicle (xEV) adoption and assure driver satisfaction. Tailoring the charging experience incorporating smart algorithms introduces an exciting set of development opportunities. The goal of a smart charging algorithm is to lay down an accurate estimation of charging power needs for each user. As recommender systems (RS) are frequently used for tailored services and products, a novel RS based approach is developed in this study. Based on a collaborative-filtering principle, an RS agent will customize charging power transient prioritizing the physical principles governing the battery system, correlated to customer preferences. However, parallel to other RS applications, a collaborative-filtering for charging power transient design may suffer from the cold-start problem. This paper thus aims to prescribe a remedy for the cold-start problem encountered in RS specifically for charging power transient design. The RS is cold-started based on multiphysical modelling, combined with customer driving styles. It is shown that using 7 fundamental charging power transients would capture about 70% of a set of representative charging power transient population. Matching a unsupervised learning based clustering pipeline for 7 possible customer driving styles, an RS agent can prescribe 7 charging power transients automatically and cold-start the RS until more data is available.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697286","citationCount":"0","resultStr":"{\"title\":\"A Physics-Informed Cold-Start Capability for xEV Charging Recommender System\",\"authors\":\"Raik Orbay;Aditya Pratap Singh;Johannes Emilsson;Michele Becciani;Evelina Wikner;Victor Gustafson;Torbjörn Thiringer\",\"doi\":\"10.1109/OJVT.2024.3469577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effortless charging experience will boost electric vehicle (xEV) adoption and assure driver satisfaction. Tailoring the charging experience incorporating smart algorithms introduces an exciting set of development opportunities. The goal of a smart charging algorithm is to lay down an accurate estimation of charging power needs for each user. As recommender systems (RS) are frequently used for tailored services and products, a novel RS based approach is developed in this study. Based on a collaborative-filtering principle, an RS agent will customize charging power transient prioritizing the physical principles governing the battery system, correlated to customer preferences. However, parallel to other RS applications, a collaborative-filtering for charging power transient design may suffer from the cold-start problem. This paper thus aims to prescribe a remedy for the cold-start problem encountered in RS specifically for charging power transient design. The RS is cold-started based on multiphysical modelling, combined with customer driving styles. It is shown that using 7 fundamental charging power transients would capture about 70% of a set of representative charging power transient population. Matching a unsupervised learning based clustering pipeline for 7 possible customer driving styles, an RS agent can prescribe 7 charging power transients automatically and cold-start the RS until more data is available.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10697286/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697286/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

轻松的充电体验将促进电动汽车(xEV)的普及,并确保驾驶员的满意度。采用智能算法定制充电体验带来了一系列令人兴奋的发展机遇。智能充电算法的目标是准确估计每个用户的充电功率需求。由于推荐系统(RS)经常用于定制服务和产品,本研究开发了一种基于推荐系统的新方法。基于协同过滤原理,RS 代理将根据客户的偏好,优先考虑电池系统的物理原理,定制瞬时充电功率。然而,与其他 RS 应用一样,用于充电功率瞬态设计的协同过滤可能会出现冷启动问题。因此,本文旨在针对充电电源瞬态设计 RS 中遇到的冷启动问题提出补救措施。根据多物理模型,结合客户的驾驶风格,对 RS 进行冷启动。结果表明,使用 7 种基本充电功率瞬态可捕捉到一组具有代表性的充电功率瞬态群的 70%。针对 7 种可能的客户驾驶风格,匹配基于无监督学习的聚类管道,RS 代理可自动指定 7 种充电功率瞬态,并冷启动 RS,直至获得更多数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Physics-Informed Cold-Start Capability for xEV Charging Recommender System
An effortless charging experience will boost electric vehicle (xEV) adoption and assure driver satisfaction. Tailoring the charging experience incorporating smart algorithms introduces an exciting set of development opportunities. The goal of a smart charging algorithm is to lay down an accurate estimation of charging power needs for each user. As recommender systems (RS) are frequently used for tailored services and products, a novel RS based approach is developed in this study. Based on a collaborative-filtering principle, an RS agent will customize charging power transient prioritizing the physical principles governing the battery system, correlated to customer preferences. However, parallel to other RS applications, a collaborative-filtering for charging power transient design may suffer from the cold-start problem. This paper thus aims to prescribe a remedy for the cold-start problem encountered in RS specifically for charging power transient design. The RS is cold-started based on multiphysical modelling, combined with customer driving styles. It is shown that using 7 fundamental charging power transients would capture about 70% of a set of representative charging power transient population. Matching a unsupervised learning based clustering pipeline for 7 possible customer driving styles, an RS agent can prescribe 7 charging power transients automatically and cold-start the RS until more data is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信