David D. N'Da , Janine Aucamp , Helena D. Janse van Rensburg , Keisuke Suganuma
{"title":"新型硝基吲哚嗪类化合物的设计、合成、体外和体内杀锥虫功效","authors":"David D. N'Da , Janine Aucamp , Helena D. Janse van Rensburg , Keisuke Suganuma","doi":"10.1016/j.ejmech.2024.116979","DOIUrl":null,"url":null,"abstract":"<div><div>Leishmaniasis and trypanosomiasis rank among lethal vector-borne parasitic diseases that are endemic in tropical and sub-tropical countries. There are currently no preventive vaccines against them, and once diagnosed, a handful of less effective drugs clinically accessible are the only therapeutic options offered to treat these ailments. And although curable, the eradication and elimination of these diseases are hampered by the emergence of multidrug-resistant strains of the causal pathogens. Hence, there is accrued necessity for the development of new, effective, and affordable drugs. In recent decades, several molecular scaffolds, including nitroaromatics, endoperoxides, etc., have been attempted as building blocks to generate new effective clinical antitrypanosomatid agents with low toxicity so far to no avail. In this regard, a series of nitroindolylazine derivatives was synthesised in a three-step process involving nucleophilic substitution (S<sub>N</sub>), hydrazination and Schiff base condensation reactions, and was evaluated against various <em>Leishmania</em> and <em>Trypanosoma</em> species and strains. Several promising hits portraying leishmanicidal and trypanocidal with <em>in vitro</em> submicromolar activities, and devoid of toxicity on mammalian cells were uncovered. Among these, nitrofurylazine <strong>11</strong> (<em>Tc</em> IC<sub>50</sub>: 0.08 ± 0.03 μM) and nitrothienylazine <strong>13</strong> (<em>Tc</em> IC<sub>50</sub>: 0.09 ± 0.01 μM) were evaluated <em>in vivo</em> against <em>Trypanosoma congolense</em>, the causative agent of <em>nagana</em>, which is livestock most virulent trypanosome species in mice-infected preliminary study. However, only partial efficacy was observed as all mice succumbed due to high parasitemia within 13 days post-infection during the treatment. The translational potential of antileishmanial and antichagasic hits, as well as further identification of their molecular targets, will be assessed in future research.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"280 ","pages":"Article 116979"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, in vitro and in vivo trypanosomaticidal efficacy of novel 5-nitroindolylazines\",\"authors\":\"David D. N'Da , Janine Aucamp , Helena D. Janse van Rensburg , Keisuke Suganuma\",\"doi\":\"10.1016/j.ejmech.2024.116979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leishmaniasis and trypanosomiasis rank among lethal vector-borne parasitic diseases that are endemic in tropical and sub-tropical countries. There are currently no preventive vaccines against them, and once diagnosed, a handful of less effective drugs clinically accessible are the only therapeutic options offered to treat these ailments. And although curable, the eradication and elimination of these diseases are hampered by the emergence of multidrug-resistant strains of the causal pathogens. Hence, there is accrued necessity for the development of new, effective, and affordable drugs. In recent decades, several molecular scaffolds, including nitroaromatics, endoperoxides, etc., have been attempted as building blocks to generate new effective clinical antitrypanosomatid agents with low toxicity so far to no avail. In this regard, a series of nitroindolylazine derivatives was synthesised in a three-step process involving nucleophilic substitution (S<sub>N</sub>), hydrazination and Schiff base condensation reactions, and was evaluated against various <em>Leishmania</em> and <em>Trypanosoma</em> species and strains. Several promising hits portraying leishmanicidal and trypanocidal with <em>in vitro</em> submicromolar activities, and devoid of toxicity on mammalian cells were uncovered. Among these, nitrofurylazine <strong>11</strong> (<em>Tc</em> IC<sub>50</sub>: 0.08 ± 0.03 μM) and nitrothienylazine <strong>13</strong> (<em>Tc</em> IC<sub>50</sub>: 0.09 ± 0.01 μM) were evaluated <em>in vivo</em> against <em>Trypanosoma congolense</em>, the causative agent of <em>nagana</em>, which is livestock most virulent trypanosome species in mice-infected preliminary study. However, only partial efficacy was observed as all mice succumbed due to high parasitemia within 13 days post-infection during the treatment. The translational potential of antileishmanial and antichagasic hits, as well as further identification of their molecular targets, will be assessed in future research.</div></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"280 \",\"pages\":\"Article 116979\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523424008614\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424008614","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, synthesis, in vitro and in vivo trypanosomaticidal efficacy of novel 5-nitroindolylazines
Leishmaniasis and trypanosomiasis rank among lethal vector-borne parasitic diseases that are endemic in tropical and sub-tropical countries. There are currently no preventive vaccines against them, and once diagnosed, a handful of less effective drugs clinically accessible are the only therapeutic options offered to treat these ailments. And although curable, the eradication and elimination of these diseases are hampered by the emergence of multidrug-resistant strains of the causal pathogens. Hence, there is accrued necessity for the development of new, effective, and affordable drugs. In recent decades, several molecular scaffolds, including nitroaromatics, endoperoxides, etc., have been attempted as building blocks to generate new effective clinical antitrypanosomatid agents with low toxicity so far to no avail. In this regard, a series of nitroindolylazine derivatives was synthesised in a three-step process involving nucleophilic substitution (SN), hydrazination and Schiff base condensation reactions, and was evaluated against various Leishmania and Trypanosoma species and strains. Several promising hits portraying leishmanicidal and trypanocidal with in vitro submicromolar activities, and devoid of toxicity on mammalian cells were uncovered. Among these, nitrofurylazine 11 (Tc IC50: 0.08 ± 0.03 μM) and nitrothienylazine 13 (Tc IC50: 0.09 ± 0.01 μM) were evaluated in vivo against Trypanosoma congolense, the causative agent of nagana, which is livestock most virulent trypanosome species in mice-infected preliminary study. However, only partial efficacy was observed as all mice succumbed due to high parasitemia within 13 days post-infection during the treatment. The translational potential of antileishmanial and antichagasic hits, as well as further identification of their molecular targets, will be assessed in future research.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.