基于 MOFs 的 In2O3 中空微管/ZnCo2O4 微流体用于快速灵敏地检测正丁醇

IF 8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Wangchang Geng, Pengfei Song, Libing Duan, Tingyue Luan
{"title":"基于 MOFs 的 In2O3 中空微管/ZnCo2O4 微流体用于快速灵敏地检测正丁醇","authors":"Wangchang Geng, Pengfei Song, Libing Duan, Tingyue Luan","doi":"10.1016/j.snb.2024.136803","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs)-derived metal oxides have a high specific surface area and porous structure, making them promising for gas sensing applications. In this paper, MOFs-derived In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub> composites were synthesized using a two-step solvothermal method. Through a series of characterization strategies, it is revealed that the morphology of the In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub> composites consists of hollow microtubes and microflowers. The gas sensing performance of In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub> composites was significantly enhanced compared to pure In<sub>2</sub>O<sub>3</sub>. Among them, the In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub>-2 sensor exhibited superior performance towards 100 ppm <em>n</em>-butanol gas, with a lower operating temperature of 200℃, a higher response value of 208.7, a lower detection limit of 4.2 ppb, shorter response/recovery times of 152<!-- --> <!-- -->s/223<!-- --> <!-- -->s, higher selectivity, and better repeatability. Furthermore, the improved gas response can be attributed to the utilization of MOFs as self-sacrificial templates, the high specific surface area of the sensing materials, and the formation of <em>p-n</em> heterojunctions. This study provides a valuable reference for synthesizing <em>n</em>-butanol sensing materials with a high specific surface area, strong response, and excellent selectivity.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOFs-derived In2O3 hollow microtubes/ZnCo2O4 microflowers for fast and sensitive detection of n-butanol\",\"authors\":\"Wangchang Geng, Pengfei Song, Libing Duan, Tingyue Luan\",\"doi\":\"10.1016/j.snb.2024.136803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-organic frameworks (MOFs)-derived metal oxides have a high specific surface area and porous structure, making them promising for gas sensing applications. In this paper, MOFs-derived In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub> composites were synthesized using a two-step solvothermal method. Through a series of characterization strategies, it is revealed that the morphology of the In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub> composites consists of hollow microtubes and microflowers. The gas sensing performance of In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub> composites was significantly enhanced compared to pure In<sub>2</sub>O<sub>3</sub>. Among them, the In<sub>2</sub>O<sub>3</sub>/ZnCo<sub>2</sub>O<sub>4</sub>-2 sensor exhibited superior performance towards 100 ppm <em>n</em>-butanol gas, with a lower operating temperature of 200℃, a higher response value of 208.7, a lower detection limit of 4.2 ppb, shorter response/recovery times of 152<!-- --> <!-- -->s/223<!-- --> <!-- -->s, higher selectivity, and better repeatability. Furthermore, the improved gas response can be attributed to the utilization of MOFs as self-sacrificial templates, the high specific surface area of the sensing materials, and the formation of <em>p-n</em> heterojunctions. This study provides a valuable reference for synthesizing <em>n</em>-butanol sensing materials with a high specific surface area, strong response, and excellent selectivity.\",\"PeriodicalId\":425,\"journal\":{\"name\":\"Sensors and Actuators B: Chemical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators B: Chemical\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.snb.2024.136803\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.136803","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属有机框架(MOFs)衍生的金属氧化物具有高比表面积和多孔结构,因此在气体传感应用中大有可为。本文采用两步溶热法合成了由 MOFs 衍生的 In2O3/ZnCo2O4 复合材料。通过一系列表征策略,发现 In2O3/ZnCo2O4 复合材料的形貌由空心微管和微流组成。与纯 In2O3 相比,In2O3/ZnCo2O4 复合材料的气体传感性能明显提高。其中,In2O3/ZnCo2O4-2 传感器对 100 ppm 正丁醇气体具有更优越的性能,工作温度更低,为 200℃,响应值更高,为 208.7,检测限更低,为 4.2 ppb,响应/恢复时间更短,为 152 秒/223 秒,选择性更高,重复性更好。此外,气体响应的改善还归功于利用 MOFs 作为自牺牲模板、传感材料的高比表面积以及 p-n 异质结的形成。这项研究为合成具有高比表面积、强响应和优异选择性的正丁醇传感材料提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MOFs-derived In2O3 hollow microtubes/ZnCo2O4 microflowers for fast and sensitive detection of n-butanol

MOFs-derived In2O3 hollow microtubes/ZnCo2O4 microflowers for fast and sensitive detection of n-butanol
Metal-organic frameworks (MOFs)-derived metal oxides have a high specific surface area and porous structure, making them promising for gas sensing applications. In this paper, MOFs-derived In2O3/ZnCo2O4 composites were synthesized using a two-step solvothermal method. Through a series of characterization strategies, it is revealed that the morphology of the In2O3/ZnCo2O4 composites consists of hollow microtubes and microflowers. The gas sensing performance of In2O3/ZnCo2O4 composites was significantly enhanced compared to pure In2O3. Among them, the In2O3/ZnCo2O4-2 sensor exhibited superior performance towards 100 ppm n-butanol gas, with a lower operating temperature of 200℃, a higher response value of 208.7, a lower detection limit of 4.2 ppb, shorter response/recovery times of 152 s/223 s, higher selectivity, and better repeatability. Furthermore, the improved gas response can be attributed to the utilization of MOFs as self-sacrificial templates, the high specific surface area of the sensing materials, and the formation of p-n heterojunctions. This study provides a valuable reference for synthesizing n-butanol sensing materials with a high specific surface area, strong response, and excellent selectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信