生物分子凝结编程花期过渡,协调花期和花序结构

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2024-10-18 DOI:10.1111/nph.20204
Xiaozhen Huang, Yongfang Yang, Cao Xu
{"title":"生物分子凝结编程花期过渡,协调花期和花序结构","authors":"Xiaozhen Huang, Yongfang Yang, Cao Xu","doi":"10.1111/nph.20204","DOIUrl":null,"url":null,"abstract":"Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"25 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture\",\"authors\":\"Xiaozhen Huang, Yongfang Yang, Cao Xu\",\"doi\":\"10.1111/nph.20204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20204\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20204","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物分子凝聚是指将生物大分子(DNA、RNA、蛋白质)集中到小室中,形成具有独特性质和功能的无膜细胞器或凝聚体。这种无处不在的现象近年来备受关注,因为它在生命系统的发育过程和对环境线索的反应中发挥着多方面的作用。最近的研究发现,生物分子缩合在调节植物从无性生殖向生殖生长过渡的过程中发挥着至关重要的作用,这一程序化过程被称为花期过渡,它决定了开花植物的开花时间和花序结构。在这篇 "坦斯利洞察 "中,我们回顾了生物分子缩聚如何整合发育和环境信号,对花的过渡过程进行编程和重编程,从而使开花时间和花序结构多样化的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture
Biomolecular condensation involves the concentration of biomolecules (DNA, RNA, proteins) into compartments to form membraneless organelles or condensates with unique properties and functions. This ubiquitous phenomenon has garnered considerable attention in recent years owing to its multifaceted roles in developmental processes and responses to environmental cues in living systems. Recent studies have revealed that biomolecular condensation plays essential roles in regulating the transition of plants from vegetative to reproductive growth, a programmed process known as floral transition that determines flowering time and inflorescence architecture in flowering plants. In this Tansley insight, we review advances in how biomolecular condensation integrates developmental and environmental signals to program and reprogram the floral transition thus diversifies flowering time and inflorescence architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信