Hang Liu, Jinhui Fan, Xinyi Lin, Kai Lin, Suhao Wang, Songyuan Liu, Fei Wang, Jizhou Song
{"title":"基于柔性超声阵列和机器学习的气液两相流模式识别","authors":"Hang Liu, Jinhui Fan, Xinyi Lin, Kai Lin, Suhao Wang, Songyuan Liu, Fei Wang, Jizhou Song","doi":"10.1038/s41528-024-00354-8","DOIUrl":null,"url":null,"abstract":"Ultrasound technology has been recognized as the mainstream approach for the identification of gas-liquid two-phase flow patterns, which holds great value in engineering domain. However, commercial rigid probes are bulky, limiting their adaptability to curved surfaces. Here, we propose a strategy for autonomous identification of flow patterns based on flexible ultrasound array and machine learning. The array features high-performance 1–3 piezoelectric composite material, stretchable serpentine wires, soft Eco-flex layers and a polydimethylsiloxane (PDMS) adhesive layer. The resulting ultrasound array exhibits excellent electromechanical characteristics and offers a large stretchability for an intimate interfacial contact to curved surface without the need of ultrasound coupling agents. We demonstrated that the flexible ultrasound array combined with machine learning can accurately identify gas-liquid two-phase flow patterns, in a circular pipeline. This work presents an effective tool for recognizing gas-liquid two-phase flow patterns, offering engineering opportunities in petroleum extraction and natural gas transportation.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00354-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Identification of gas-liquid two-phase flow patterns based on flexible ultrasound array and machine learning\",\"authors\":\"Hang Liu, Jinhui Fan, Xinyi Lin, Kai Lin, Suhao Wang, Songyuan Liu, Fei Wang, Jizhou Song\",\"doi\":\"10.1038/s41528-024-00354-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound technology has been recognized as the mainstream approach for the identification of gas-liquid two-phase flow patterns, which holds great value in engineering domain. However, commercial rigid probes are bulky, limiting their adaptability to curved surfaces. Here, we propose a strategy for autonomous identification of flow patterns based on flexible ultrasound array and machine learning. The array features high-performance 1–3 piezoelectric composite material, stretchable serpentine wires, soft Eco-flex layers and a polydimethylsiloxane (PDMS) adhesive layer. The resulting ultrasound array exhibits excellent electromechanical characteristics and offers a large stretchability for an intimate interfacial contact to curved surface without the need of ultrasound coupling agents. We demonstrated that the flexible ultrasound array combined with machine learning can accurately identify gas-liquid two-phase flow patterns, in a circular pipeline. This work presents an effective tool for recognizing gas-liquid two-phase flow patterns, offering engineering opportunities in petroleum extraction and natural gas transportation.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00354-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00354-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00354-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Identification of gas-liquid two-phase flow patterns based on flexible ultrasound array and machine learning
Ultrasound technology has been recognized as the mainstream approach for the identification of gas-liquid two-phase flow patterns, which holds great value in engineering domain. However, commercial rigid probes are bulky, limiting their adaptability to curved surfaces. Here, we propose a strategy for autonomous identification of flow patterns based on flexible ultrasound array and machine learning. The array features high-performance 1–3 piezoelectric composite material, stretchable serpentine wires, soft Eco-flex layers and a polydimethylsiloxane (PDMS) adhesive layer. The resulting ultrasound array exhibits excellent electromechanical characteristics and offers a large stretchability for an intimate interfacial contact to curved surface without the need of ultrasound coupling agents. We demonstrated that the flexible ultrasound array combined with machine learning can accurately identify gas-liquid two-phase flow patterns, in a circular pipeline. This work presents an effective tool for recognizing gas-liquid two-phase flow patterns, offering engineering opportunities in petroleum extraction and natural gas transportation.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.