鼠李糖乳杆菌 GG 和动物双歧杆菌亚种 BB-12 通过调节伤口微环境促进感染伤口愈合

IF 5.7 2区 生物学
Zhe Yin, Yilin Wang, Xiaojuan Feng, Changqing Liu, Xiaoyang Guan, Shuyan Liu, Zhanyi Long, Zhonghua Miao, Fang He, Ruyue Cheng, Yanting Han, Ka Li
{"title":"鼠李糖乳杆菌 GG 和动物双歧杆菌亚种 BB-12 通过调节伤口微环境促进感染伤口愈合","authors":"Zhe Yin,&nbsp;Yilin Wang,&nbsp;Xiaojuan Feng,&nbsp;Changqing Liu,&nbsp;Xiaoyang Guan,&nbsp;Shuyan Liu,&nbsp;Zhanyi Long,&nbsp;Zhonghua Miao,&nbsp;Fang He,&nbsp;Ruyue Cheng,&nbsp;Yanting Han,&nbsp;Ka Li","doi":"10.1111/1751-7915.70031","DOIUrl":null,"url":null,"abstract":"<p>Infected wounds can result in complex clinical complications and delayed healing, presenting a significant global public health challenge. This study explored the effects of topical application of two probiotics, <i>Lactobacillus rhamnosus</i> GG (LGG) and <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> BB-12, on the microenvironment of infected wounds and their impact on wound healing. LGG and BB-12 were applied separately and topically on the <i>Staphylococcus aureus (S. aureus)</i>-infected skin wounds of the rat model on a daily basis. Both probiotics significantly accelerated wound healing, demonstrated by enhanced granulation tissue formation and increased collagen deposition, with BB-12 showing superior efficacy. LGG and BB-12 both effectively inhibited neutrophil infiltration and decreased the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Notably, BB-12 markedly reduced IL-6 levels, while LGG significantly lowered TNF-α, transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). Additionally, both probiotics promoted macrophage polarization towards the anti-inflammatory M2 phenotype. Microbiota analysis revealed that LGG and BB-12 significantly decreased the abundance of pathogenic bacteria (e.g. <i>Staphylococcus</i> and <i>Proteus</i>) and increased the proportion of beneficial bacteria (e.g. <i>Corynebacterium</i>). Particularly, BB-12 was more effective in reducing <i>Staphylococcus</i> abundance, whereas LGG excelled in promoting <i>Corynebacterium</i> growth. These findings suggest the ability of LGG and BB-12 to modulate the wound microenvironment, enhance wound healing and provide valuable insights for the management of infected wounds.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70031","citationCount":"0","resultStr":"{\"title\":\"Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 promote infected wound healing via regulation of the wound microenvironment\",\"authors\":\"Zhe Yin,&nbsp;Yilin Wang,&nbsp;Xiaojuan Feng,&nbsp;Changqing Liu,&nbsp;Xiaoyang Guan,&nbsp;Shuyan Liu,&nbsp;Zhanyi Long,&nbsp;Zhonghua Miao,&nbsp;Fang He,&nbsp;Ruyue Cheng,&nbsp;Yanting Han,&nbsp;Ka Li\",\"doi\":\"10.1111/1751-7915.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infected wounds can result in complex clinical complications and delayed healing, presenting a significant global public health challenge. This study explored the effects of topical application of two probiotics, <i>Lactobacillus rhamnosus</i> GG (LGG) and <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> BB-12, on the microenvironment of infected wounds and their impact on wound healing. LGG and BB-12 were applied separately and topically on the <i>Staphylococcus aureus (S. aureus)</i>-infected skin wounds of the rat model on a daily basis. Both probiotics significantly accelerated wound healing, demonstrated by enhanced granulation tissue formation and increased collagen deposition, with BB-12 showing superior efficacy. LGG and BB-12 both effectively inhibited neutrophil infiltration and decreased the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Notably, BB-12 markedly reduced IL-6 levels, while LGG significantly lowered TNF-α, transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). Additionally, both probiotics promoted macrophage polarization towards the anti-inflammatory M2 phenotype. Microbiota analysis revealed that LGG and BB-12 significantly decreased the abundance of pathogenic bacteria (e.g. <i>Staphylococcus</i> and <i>Proteus</i>) and increased the proportion of beneficial bacteria (e.g. <i>Corynebacterium</i>). Particularly, BB-12 was more effective in reducing <i>Staphylococcus</i> abundance, whereas LGG excelled in promoting <i>Corynebacterium</i> growth. These findings suggest the ability of LGG and BB-12 to modulate the wound microenvironment, enhance wound healing and provide valuable insights for the management of infected wounds.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70031\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70031","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

感染性伤口可导致复杂的临床并发症和延迟愈合,对全球公共卫生构成重大挑战。本研究探讨了局部应用鼠李糖乳杆菌 GG(LGG)和动物双歧杆菌亚种 BB-12 这两种益生菌对感染伤口微环境的影响及其对伤口愈合的影响。每天将 LGG 和 BB-12 分别局部涂抹在大鼠模型被金黄色葡萄球菌(S. aureus)感染的皮肤伤口上。两种益生菌都能明显加速伤口愈合,表现为肉芽组织形成和胶原沉积增加,其中 BB-12 的疗效更佳。LGG 和 BB-12 都能有效抑制中性粒细胞的浸润,降低促炎细胞因子肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)的表达。值得注意的是,BB-12 显著降低了 IL-6 水平,而 LGG 则显著降低了 TNF-α、转化生长因子-β (TGF-β) 和血管内皮生长因子 (VEGF)。此外,两种益生菌都能促进巨噬细胞向抗炎 M2 表型极化。微生物群分析表明,LGG 和 BB-12 能显著减少致病菌(如葡萄球菌和变形杆菌)的数量,增加有益菌(如棒状杆菌)的比例。特别是,BB-12 能更有效地减少葡萄球菌的数量,而 LGG 则能更好地促进棒状杆菌的生长。这些研究结果表明,LGG 和 BB-12 能够调节伤口微环境,促进伤口愈合,并为感染伤口的管理提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 promote infected wound healing via regulation of the wound microenvironment

Infected wounds can result in complex clinical complications and delayed healing, presenting a significant global public health challenge. This study explored the effects of topical application of two probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis BB-12, on the microenvironment of infected wounds and their impact on wound healing. LGG and BB-12 were applied separately and topically on the Staphylococcus aureus (S. aureus)-infected skin wounds of the rat model on a daily basis. Both probiotics significantly accelerated wound healing, demonstrated by enhanced granulation tissue formation and increased collagen deposition, with BB-12 showing superior efficacy. LGG and BB-12 both effectively inhibited neutrophil infiltration and decreased the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Notably, BB-12 markedly reduced IL-6 levels, while LGG significantly lowered TNF-α, transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). Additionally, both probiotics promoted macrophage polarization towards the anti-inflammatory M2 phenotype. Microbiota analysis revealed that LGG and BB-12 significantly decreased the abundance of pathogenic bacteria (e.g. Staphylococcus and Proteus) and increased the proportion of beneficial bacteria (e.g. Corynebacterium). Particularly, BB-12 was more effective in reducing Staphylococcus abundance, whereas LGG excelled in promoting Corynebacterium growth. These findings suggest the ability of LGG and BB-12 to modulate the wound microenvironment, enhance wound healing and provide valuable insights for the management of infected wounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信