Yi-Ru Shen, Sofia Zaballa, Xavier Bech, Anna Sancho-Balsells, Irene Rodríguez-Navarro, Carmen Cifuentes-Díaz, Gönül Seyit-Bremer, Seung Hee Chun, Tobias Straub, Jordi Abante, Iñaki Merino-Valverde, Laia Richart, Vipul Gupta, Hao-Yi Li, Ivan Ballasch, Noelia Alcázar, Jordi Alberch, Josep M. Canals, Maria Abad, Manuel Serrano, Daniel del Toro
{"title":"通过体内瞬时重编程扩展新皮质并防止神经变性","authors":"Yi-Ru Shen, Sofia Zaballa, Xavier Bech, Anna Sancho-Balsells, Irene Rodríguez-Navarro, Carmen Cifuentes-Díaz, Gönül Seyit-Bremer, Seung Hee Chun, Tobias Straub, Jordi Abante, Iñaki Merino-Valverde, Laia Richart, Vipul Gupta, Hao-Yi Li, Ivan Ballasch, Noelia Alcázar, Jordi Alberch, Josep M. Canals, Maria Abad, Manuel Serrano, Daniel del Toro","doi":"10.1016/j.stem.2024.09.013","DOIUrl":null,"url":null,"abstract":"Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer’s disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"58 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansion of the neocortex and protection from neurodegeneration by in vivo transient reprogramming\",\"authors\":\"Yi-Ru Shen, Sofia Zaballa, Xavier Bech, Anna Sancho-Balsells, Irene Rodríguez-Navarro, Carmen Cifuentes-Díaz, Gönül Seyit-Bremer, Seung Hee Chun, Tobias Straub, Jordi Abante, Iñaki Merino-Valverde, Laia Richart, Vipul Gupta, Hao-Yi Li, Ivan Ballasch, Noelia Alcázar, Jordi Alberch, Josep M. Canals, Maria Abad, Manuel Serrano, Daniel del Toro\",\"doi\":\"10.1016/j.stem.2024.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer’s disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders.\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.09.013\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.09.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Expansion of the neocortex and protection from neurodegeneration by in vivo transient reprogramming
Yamanaka factors (YFs) can reverse some aging features in mammalian tissues, but their effects on the brain remain largely unexplored. Here, we induced YFs in the mouse brain in a controlled spatiotemporal manner in two different scenarios: brain development and adult stages in the context of neurodegeneration. Embryonic induction of YFs perturbed cell identity of both progenitors and neurons, but transient and low-level expression is tolerated by these cells. Under these conditions, YF induction led to progenitor expansion, an increased number of upper cortical neurons and glia, and enhanced motor and social behavior in adult mice. Additionally, controlled YF induction is tolerated by principal neurons in the adult dorsal hippocampus and prevented the development of several hallmarks of Alzheimer’s disease, including cognitive decline and altered molecular signatures, in the 5xFAD mouse model. These results highlight the powerful impact of YFs on neural proliferation and their potential use in brain disorders.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.