Alberto Pérez-Posada, Che-Yi Lin, Tzu-Pei Fan, Ching-Yi Lin, Yi-Chih Chen, José Luis Gómez-Skarmeta, Jr-Kai Yu, Yi-Hsien Su, Juan J. Tena
{"title":"半脊类顺式调控基因组学与中生代基因表达动力学","authors":"Alberto Pérez-Posada, Che-Yi Lin, Tzu-Pei Fan, Ching-Yi Lin, Yi-Chih Chen, José Luis Gómez-Skarmeta, Jr-Kai Yu, Yi-Hsien Su, Juan J. Tena","doi":"10.1038/s41559-024-02562-x","DOIUrl":null,"url":null,"abstract":"<p>Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate <i>Ptychodera flava</i>. We observed that <i>P. flava</i> development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"11 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes\",\"authors\":\"Alberto Pérez-Posada, Che-Yi Lin, Tzu-Pei Fan, Ching-Yi Lin, Yi-Chih Chen, José Luis Gómez-Skarmeta, Jr-Kai Yu, Yi-Hsien Su, Juan J. Tena\",\"doi\":\"10.1038/s41559-024-02562-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate <i>Ptychodera flava</i>. We observed that <i>P. flava</i> development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.</p>\",\"PeriodicalId\":18835,\"journal\":{\"name\":\"Nature ecology & evolution\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41559-024-02562-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-024-02562-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes
Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate Ptychodera flava. We observed that P. flava development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.