密度泛函理论对锌离子电池用氧化钒阴极中水的结构影响预测的实验验证

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-10-18 DOI:10.1002/smll.202406801
Mengdong Wei, Yu Zhang, Yaoyu Gu, Zhiwen Wang, Hang Ye, Yang Wang, Shaojie Qu, Kuan Hu, Junqi Zhao, Chunsheng Liu, Dianzeng Jia, He Lin
{"title":"密度泛函理论对锌离子电池用氧化钒阴极中水的结构影响预测的实验验证","authors":"Mengdong Wei, Yu Zhang, Yaoyu Gu, Zhiwen Wang, Hang Ye, Yang Wang, Shaojie Qu, Kuan Hu, Junqi Zhao, Chunsheng Liu, Dianzeng Jia, He Lin","doi":"10.1002/smll.202406801","DOIUrl":null,"url":null,"abstract":"This study combines experimental methods with density flooding theory (DFT) calculations to investigate the enhancement of the electrochemical performance of vanadium oxide cathodes for aqueous zinc ion batteries (AZIBs) through strategic water content management. DFT predictions indicated that a moderate presence of structural water optimizes electrical conductivity and facilitates zinc ion diffusion. These theoretical insights are empirically validated by synthesizing AlVO-1.6 H2O using a hydrothermal method, which exhibited superior electrochemical properties. This material demonstrated an impressive initial capacity of 316 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>, with robust capacity retention after extended cycling. Remarkably, even at an elevated current density of 10 A g<sup>−1</sup>, it sustains a capacity of 161.6 mAh g<sup>−1</sup>, while maintaining a capacity retention of 97.6% over 2000 cycles. The results confirm that adjusting the structural water content in vanadium oxides significantly boosts their electrochemical capabilities, aligning experimental outcomes with computational forecasts and showcasing a novel approach for developing high-performance cathodes in energy storage technologies.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Validation of Density Functional Theory Predictions on Structural Water Impact in Vanadium Oxide Cathodes for Zinc-Ion Batteries\",\"authors\":\"Mengdong Wei, Yu Zhang, Yaoyu Gu, Zhiwen Wang, Hang Ye, Yang Wang, Shaojie Qu, Kuan Hu, Junqi Zhao, Chunsheng Liu, Dianzeng Jia, He Lin\",\"doi\":\"10.1002/smll.202406801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study combines experimental methods with density flooding theory (DFT) calculations to investigate the enhancement of the electrochemical performance of vanadium oxide cathodes for aqueous zinc ion batteries (AZIBs) through strategic water content management. DFT predictions indicated that a moderate presence of structural water optimizes electrical conductivity and facilitates zinc ion diffusion. These theoretical insights are empirically validated by synthesizing AlVO-1.6 H2O using a hydrothermal method, which exhibited superior electrochemical properties. This material demonstrated an impressive initial capacity of 316 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup>, with robust capacity retention after extended cycling. Remarkably, even at an elevated current density of 10 A g<sup>−1</sup>, it sustains a capacity of 161.6 mAh g<sup>−1</sup>, while maintaining a capacity retention of 97.6% over 2000 cycles. The results confirm that adjusting the structural water content in vanadium oxides significantly boosts their electrochemical capabilities, aligning experimental outcomes with computational forecasts and showcasing a novel approach for developing high-performance cathodes in energy storage technologies.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202406801\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406801","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究将实验方法与密度泛函理论(DFT)计算相结合,研究了通过战略性水含量管理提高锌离子水电池(AZIB)氧化钒阴极的电化学性能。DFT 预测表明,结构水的适度存在可优化导电性并促进锌离子扩散。通过采用水热法合成 AlVO-1.6 H2O,这些理论观点得到了经验验证。这种材料在 0.2 A g-1 的条件下显示出令人印象深刻的 316 mAh g-1 初始容量,并且在长时间循环后仍能保持强劲的容量。值得注意的是,即使在 10 A g-1 的较高电流密度下,它也能维持 161.6 mAh g-1 的容量,同时在 2000 次循环后仍能保持 97.6% 的容量保持率。研究结果证实,调整钒氧化物中的结构水含量可显著提高其电化学能力,使实验结果与计算预测相吻合,为开发储能技术中的高性能阴极提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental Validation of Density Functional Theory Predictions on Structural Water Impact in Vanadium Oxide Cathodes for Zinc-Ion Batteries

Experimental Validation of Density Functional Theory Predictions on Structural Water Impact in Vanadium Oxide Cathodes for Zinc-Ion Batteries
This study combines experimental methods with density flooding theory (DFT) calculations to investigate the enhancement of the electrochemical performance of vanadium oxide cathodes for aqueous zinc ion batteries (AZIBs) through strategic water content management. DFT predictions indicated that a moderate presence of structural water optimizes electrical conductivity and facilitates zinc ion diffusion. These theoretical insights are empirically validated by synthesizing AlVO-1.6 H2O using a hydrothermal method, which exhibited superior electrochemical properties. This material demonstrated an impressive initial capacity of 316 mAh g−1 at 0.2 A g−1, with robust capacity retention after extended cycling. Remarkably, even at an elevated current density of 10 A g−1, it sustains a capacity of 161.6 mAh g−1, while maintaining a capacity retention of 97.6% over 2000 cycles. The results confirm that adjusting the structural water content in vanadium oxides significantly boosts their electrochemical capabilities, aligning experimental outcomes with computational forecasts and showcasing a novel approach for developing high-performance cathodes in energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信